SCIENCE CHINA Information Sciences, Volume 63 , Issue 4 : 140902(2020) https://doi.org/10.1007/s11432-019-2809-3

Petrography and chronology of lunar meteorite Northwest Africa 6950

More info
  • ReceivedJun 3, 2019
  • AcceptedJan 19, 2020
  • PublishedMar 9, 2020


Northwest Africa (NWA) 6950 is an olivine-gabbro lunar meteorite that has a distinctly different petrographic texture from other lunar basalts. In this contribution, we report the petrography, mineralogy, and U-Pb geochronology of baddeleyite and phosphate in this lunar meteorite and make a comparison with other NWA 773 paired meteorites. NWA 6950 consists mainly of coarse-grained olivine, pyroxene, and plagioclase, with minor ilmenite, chromite, troilite, baddeleyite, taenite, and apatite. The abundant rounded to euhedral olivine has a limited Fo ranging from 68 to 69. Pyroxenes include both augite and pigeonite, with a narrow range of Mg#=71–80, and composition, respectively, ${\rm~En}_{46\text{-}52}{\rm~Fs}_{12\text{-}16}{\rm~Wo}_{32\text{-}41}$ and ${\rm~En}_{58\text{-}68}{\rm~Fs}_{19\text{-}28}{\rm~Wo}_{7\text{-}20}$. Plagioclase is mainly anhedral, conforming to the crystal margins of olivine and pyroxene. The plagioclase grains are elongated and several hundreds of microns in length. Raman spectra shows that plagioclase has been transformed into maskelynite, which is very calcic (${\rm~An}_{87\text{-}95}$) with low sodium and very low potassium (${\rm~Ab}_{4\text{-}9}{\rm~Or}_{0.6\text{-}3.7}$). The weighted mean $^{207}{\rm~Pb}/^{206}{\rm~Pb}$ ages of baddeleyite and phosphate measured using a sensitive high resolution ion micro probe (SHRIMP II) are $3119\pm16$ Ma ($n=9$, MSWD = 2.5) (meansquared weighted deviates, MSWD) and $3119\pm18$ Ma ($n=15$, MSWD = 2.1), respectively, giving the crystallization age of the meteorite.NWA 6950 has similar mineral compositions, geochemical characteristics, and an almost identical age of crystallization to the magnesian gabbro of the NWA 773 clan. We conclude that NWA 6950 and NWA 773 are paired meteorites, which crystallize at ca. 3119 Ma, and represent magmatic activities in the KREEP (potassium (K), rare earth elements (REE) and phosphorus (P) rich lunar material) region of the Moon.


[1] Warren P H, Kallemeyn G W. Geochemical investigation of five lunar meteorites: implications for the composition, origin and evolution of the Lunar crust. Proc NIPR Symp Antarcti Meteorites, 1991, 4: 91--117. Google Scholar

[2] Hsu W, Zhang A, Bartoschewitz R. Petrography, mineralogy, and geochemistry of lunar meteorite Sayh al Uhaymir 300. Meteoritics Planet Sci, 2008, 43: 1363-1381 CrossRef ADS Google Scholar

[3] Wang Y, Hsu W, Guan Y. Petrogenesis of the Northwest Africa 4734 basaltic lunar meteorite. GeoChim CosmoChim Acta, 2012, 92: 329-344 CrossRef ADS Google Scholar

[4] Shaulis B J, Righter M, Lapen T J, et al. Baddeleyite chronology of northwest Africa 6950: A 3.1 Ga lunar olivine gabbro paired with NWA 2977 and the cumulate mare gabbro lithology in NWA 773. In: Proceedings of the 43rd Lunar and Planetary Science Conference, 2012. 2236. Google Scholar

[5] Shaulis B J, Righter M, Lapen T J. 3.1 Ga crystallization age for magnesian and ferroan gabbro lithologies in the Northwest Africa 773 clan of lunar meteorites. GeoChim CosmoChim Acta, 2017, 213: 435-456 CrossRef ADS Google Scholar

[6] Fagan T J, Taylor G J, Keil K. Northwest Africa 773: Lunar origin and iron-enrichment trend. Meteoritics Planet Sci, 2003, 38: 529-554 CrossRef ADS Google Scholar

[7] Bunch T E, Wittke J H, Korotev R L, et al. Lunar meteorites NWA 2700, NWA 2727 and NWA 2977: Mare basalt/gabbro brecciaswith affinities to NWA 773. In: Proceedings of the 37th Lunar and Planetary Science Conference, 2006. 1375. Google Scholar

[8] Zeigler R A, Korotev R L, Jolliff B L. Petrography, geochemistry, and pairing relationships of basaltic lunar meteorite stones NWA 773, NWA 2700, NWA 2727, NWA2977, and NWA 3160. In: Proceedings of the 38th Lunar and Planetary Science Conference, 2007. 2109. Google Scholar

[9] North S N, Jolliff B L, Korotev R L. Ferroan gabbro and leucogabbro lithologies in NWA 3170, possible petrogenetic link and comparison to NWA 2727. In: Proceedings of the 45th Lunar and Planetary Science Conference, 2014. 2858. Google Scholar

[10] Nagaoka H, Karouji Y, Takeda, H. Mineralogy and petrology of lunarmeteorite Northwest Africa 2977 consisting of olivine cumulate gabbroincluding inverted pigeonite. Earth, Planets, Space, 2015, 67: 1-8. Google Scholar

[11] Yokoi N, Takenouchi A, Mikouchi T. Iron valencestates of plagioclase in some lunar meteorites. In: Proceedings of the 49th Lunar and Planetary Science Conference, 2018. 2227. Google Scholar

[12] Chen J, Jolliff B L, Korotev R L. Northwest africa 10985: a new lunar gabbro?, In: Proceedings of the 50th Lunar and Planetary Science Conference, 2019. 2132. Google Scholar

[13] Jolliff B L, Korotev R L, Zeigler R A. Northwest Africa 773: lunar mare breccia with a shallow-formed olivine-cumulate component, inferred very-low-Ti (VLT) heritage, and a KREEP connection. GeoChim CosmoChim Acta, 2003, 67: 4857-4879 CrossRef ADS Google Scholar

[14] Papanastassiou D A, Wasserburg G J. Lunar chronology and evolution from RbSr studies of Apollo 11 and 12 samples. Earth Planet Sci Lett, 1971, 11: 37-62 CrossRef Google Scholar

[15] Nyquist L E, Bansal B M, Wooden J, et al. Sr-isotopic constraints on the peterogenesis of Apollo 12 mare basalts. In: Proceedings of the 8th Lunar and Planetary Science Conference, 1977. 1383--1415. Google Scholar

[16] OuYang Z. Introduction to Lunar Science (in Chinese). Beijing: Astronautic Publishing House, 2005. Google Scholar

[17] Fernandes V A, Burgess R, Turner G. 40Ar-39Ar chronology of lunar meteorites Northwest Africa 032 and 773. Meteoritics Planet Sci, 2003, 38: 555-564 CrossRef ADS Google Scholar

[18] Borg L E, Shearer C K, Asmerom Y. Prolonged KREEP magmatism on the Moon indicated by the youngest dated lunar igneous rock. Nature, 2004, 432: 209-211 CrossRef PubMed ADS Google Scholar

[19] Rankenburg K, Brandon A D, Norman M D. A Rb Sr and Sm Nd isotope geochronology and trace element study of lunar meteorite LaPaz Icefield 02205. GeoChim CosmoChim Acta, 2007, 71: 2120-2135 CrossRef ADS Google Scholar

[20] Shearer C K, Borg L E, Papike J J. A view of KREEP-rich lunar basaltic magmatism through the eyes of NWA 773. In: Proceedings of the 36th Lunar and Planetary Science Conference, 2005. 1191. Google Scholar

[21] Fagan T J, Kashima D, Wakabayashi Y. Case study of magmatic differentiation trends on the Moon based on lunar meteorite Northwest Africa 773 and comparison with Apollo 15 quartz monzodiorite. GeoChim CosmoChim Acta, 2014, 133: 97-127 CrossRef ADS Google Scholar

[22] Fagan T J, Nagaoka H. Northwest Africa 773 clan olivinecumulate gabbros: Crystallization trends compared with a gabbroic sill from Murotomisaki. In: Proceedings of the 80th Annual Meeting of the Meteoritical Society, 2017. 6082. Google Scholar

[23] Kayama M, Tomioka N, Ohtani E. Discovery of moganite in a lunar meteorite as a trace of H 2 O ice in the Moon's regolith. Sci Adv, 2018, 4: eaar4378 CrossRef PubMed ADS Google Scholar

[24] Nyquist L E, Shih C Y, Reese Y D, et al. Sm-Nd and Rb-Sr ages and isotopic systematic for NWA 2977, a young basaltfrom the PKT. Meteoritics Planetary Sci, 2009, 44: 159. Google Scholar

[25] Zhang A, Hsu W, Floss C, et al. Petrogenesis of lunar meteorite northwest Africa 2977: constraints from in situ microprobe results. Meteorit Planet Sci, 2011, 45: 1929-1947. Google Scholar

[26] Borg L E, Gaffney A M, Shearer C K. Mechanisms for incompatible-element enrichment on the Moon deduced from the lunar basaltic meteorite Northwest Africa 032. GeoChim CosmoChim Acta, 2009, 73: 3963-3980 CrossRef ADS Google Scholar

[27] Ruzicka A, Grossman J N, Garvie L. The Meteoritical Bulletin, No. 100, 2014 June. Meteorit Planet Sci, 2014, 49: E1-E101 CrossRef ADS Google Scholar

[28] Heaman L M. The application of U-Pb geochronology to mafic, ultramafic and alkaline rocks: an evaluation of three mineral standards. Chem Geol, 2009, 261: 0-52. Google Scholar

[29] Williams I S. U-Th-Pb geochronology by ion microprobe. In: Applications of microanalytical techniques to understanding mineralizing processes: Reviews in Economic Geology, 1998, 7: 1-35. Google Scholar

[30] Li Q L, Li X H, Wu F Y. In-situ SIMS U-Pb dating of phanerozoic apatite with low U and high common Pb. Gondwana Res, 2012, 21: 745-756 CrossRef ADS Google Scholar

[31] Trotter J A, Eggins S M. Chemical systematics of conodont apatite determined by laser ablation ICPMS. ChemGeol, 2006, 233: 196-216 CrossRef ADS Google Scholar

[32] Nemchin A A, Pidgeon R T, Healy D. The comparative behavior of apatite-zircon U-Pb systems in Apollo 14 breccias: Implications for the thermal history of the Fra Mauro Formation. Meteoritics Planet Sci, 2009, 44: 1717-1734 CrossRef ADS Google Scholar

[33] Sano Y, Oyama T, Terada K. Ion microprobe U-Pb dating of apatite. ChemGeol, 1999, 153: 249-258 CrossRef Google Scholar

[34] Lin Y, Shen W, Liu Y. Very high-K KREEP-rich clasts in the impact melt breccia of the lunar meteorite SaU 169: New constraints on the last residue of the Lunar Magma Ocean. GeoChim CosmoChim Acta, 2012, 85: 19-40 CrossRef ADS Google Scholar

[35] Wu Y, Hsu W. Mineral chemistry and in situ Usbnd Pb geochronology of the mare basalt Northwest Africa 10597: Implications for low-Ti mare volcanism around 3.0 Ga. Icarus, 2020, 338: 113531 CrossRef ADS Google Scholar

[36] Burgess R, Fernandes V A, Irving A J, et al. Ar-Ar ages of nwa 2977 and NWA 3160 - lunar meteorites paired with NWA 773. In: Proceedings of the 38th Lunar and Planetary Science Conference, 2007. 1603. Google Scholar

[37] Valencia S N, Jolliff B L, Korotev R L. Petrography, relationships, and petrogenesis of the gabbroic lithologies in Northwest Africa 773 clan members Northwest Africa 773, 2727, 3160, 3170, 7007, and 10656. Meteorit Planet Sci, 2019, 54: 2083-2115. Google Scholar

[38] Jolliff B L, Zeigler R A, Korotev R L. Compositional characteristics and petrogenetic relationships among the NWA 773 clan of lunar meteorites. In: Proceedings of the 38th Lunar and Planetary Science Conference, 2007. 1489. Google Scholar

[39] Meyer C. Lunar sample compendium. 2012. http://curator.jsc.nasa.gov/lunar/compendium.cfm. Google Scholar

[40] Papanastassiou D A, Wasserburg G J. RbSr ages and initial strontium in basalts from Apollo 15. Earth Planet Sci Lett, 1973, 17: 324-337 CrossRef Google Scholar

  • Figure 1

    The BSE image of Northwest Africa (NWA) 6950.

  • Figure 2

    The BSE images of representative areas in NWA 6950. (a) Local details of the rock; (b) morphology of some accessory minerals in the rock; (c) a SIMV-shock induced melt vein in the stone; (d) volcanic glass. Ol: olivine, Pgt: pigeonite, MSK: maskelynite, Apa: apatite, Bad: baddeleyite, ilm: ilmenite, Gl: glass.

  • Table 1   Compositions of major elements of phosphate from NWA 6950$^{\rm~a)}$
    Phosphate (wt.%)Pho-1Pho-2Pho-3Pho-4Pho-5Pho-6Pho-7Pho-8Pho-9Pho-10Pho-11Pho-12

    a) Apa: Apatite; Mrl: merrillite; bd: below detection limit.

  • Table 2   Summary of isotopic ages (in Ma) of NWA 773 and its paired lunar meteorites$^{\rm~a)}$
    SampleAge (Ma)MethodMaterialRef.
    3129$\pm$11 (95% conf.)Pb-Pbbaddeleyite[5]
    NWA 7732865$\pm$31 (2$\sigma$)Sm-NdWhole rock[18]
    2670$\pm$10 (2$\sigma$)Ar-ArWhole rock[17]
    NWA 31602650$\pm$40 (2$\sigma$)Ar-ArWhole rock[36]
    NWA 31703118$\pm$14 (95% conf.)Pb-Pbbaddeleyite[5]
    NWA 70073106$\pm$22 (95% conf.)Pb-Pbbaddeleyite[5]
    3100$\pm$16 (95% conf.)Pb-Pbbaddeleyite[4]
    NWA 69503119$\pm$18 (95% conf.)Pb-PbphosphateThis study
    3119$\pm$16 (95% conf.)Pb-PbbaddeleyiteThis study
    3123$\pm$7 (2$\sigma$)Pb-Pbbaddeleyite[25]
    NWA 29773100$\pm$50 (2$\sigma$)Sm-NdWhole rock[24]
    3290$\pm$110 (2$\sigma$)Rb-SrWhole rock[24]


Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号