SCIENCE CHINA Information Sciences, Volume 64 , Issue 4 : 149402(2021) https://doi.org/10.1007/s11432-019-2846-9

High mobility germanium-on-insulator p-channel FinFETs

More info
  • ReceivedOct 14, 2019
  • AcceptedMar 18, 2020
  • PublishedNov 25, 2020


There is no abstract available for this article.


This work was supported by National Key Research and Development Project (Grant Nos. 2018YFB2200500, 2018YFB2202800) and National Natural Science Foundation of China (Grant Nos. 61534004, 61604112, 61622405, 61874081, 61851406).


[1] Liu B, Gong X, Zhan C. Germanium Multiple-Gate Field-Effect Transistors Formed on Germanium-on-Insulator Substrate. IEEE Trans Electron Devices, 2013, 60: 1852-1860 CrossRef ADS Google Scholar

[2] Gong X, Han G, Bai F. IEEE Electron Device Lett, 2013, 34: 339-341 CrossRef ADS Google Scholar

[3] Zhang R, Taoka N, Huang P-C, et al. 1-nm-thick EOT high mobility Ge n- and p-MOSFETs with ultrathin GeO$_x$/Ge MOS interfaces fabricated by plasma post oxidation. In: Proceedings of International Electron Devices Meeting, Washington, 2011. 642--645. Google Scholar

[4] Liu H, Han G, Xu Y. IEEE Electron Device Lett, 2019, 40: 371-374 CrossRef Google Scholar

[5] C.-M. Lin, H.-C. Chang, Y.-T. Chen, et al. Interfacial layer-free ZrO$_2$ on Ge with 0.39-nm EOT, $\kappa~\sim$43, $\sim~2\times10^{-3}$ A/cm$^2$ gate leakage, SS =85 mV/dec, $I_{\rm~~on}/I_{\rm~~off}=6\times10^5$, and high strain response. In: Proceedings of International Electron Devices Meeting, San Francisco, 2012. 1--4. Google Scholar

[6] Müller J, B?scke T S, Schr?der U. Ferroelectricity in Simple Binary ZrO2and HfO2. Nano Lett, 2012, 12: 4318-4323 CrossRef ADS Google Scholar

[7] Kamata Y, Kamimuta Y, Ino T, et al. Influences of activation annealing on characteristics of Ge p-MOSFET with ZrO$_2$ gate dielectric. In: Proceedings of International Conference on Solid State Devices and Materials, 2005. 856--857. Google Scholar

[8] Dissanayake S, Tomiyama K, Sugahara S. High Performance Ultrathin (110)-Oriented Ge-on-Insulator p-Channel Metal-Oxide-Semiconductor Field-Effect Transistors Fabricated by Ge Condensation Technique. Appl Phys Express, 2010, 3: 041302 CrossRef ADS Google Scholar

[9] Wong I H, Chen Y T, Yan J Y. Fabrication and Low Temperature Characterization of Ge (110) and (100) p-MOSFETs. IEEE Trans Electron Devices, 2014, 61: 2215-2219 CrossRef ADS Google Scholar

  • Figure 1

    (Color online) (a) Key process steps for fabricating GeOI FinFETs; (b) SEM and (c) TEM images of GeOI FinFETs with parallel fins; (d) HRTEM showing a Ge fin with $W_{\rm~fin}$ of $\sim$33 nm and Hfin of $\sim$30 nm; (e) measured $I_{\rm~DS}$-$V_{\rm~GS}$ curves of a pair of GeOI FinFETs with fin directions of [110] and [100]; (f) $I_{\rm~DS}$-$V_{\rm~DS}$ curves showing that device with fin direction of [110] has a higher $I_{\rm~DS}$ compared to the transistor along [100]; (g) $R_{\rm~tot}$ vs. $L_{\rm~G}$ for GeOI FinFETs measured at $|V_{\rm~GS}-V_{\rm~TH}|~=1.5$ V and $V_{\rm~DS}=$ $-0.05$ V;protect łinebreak (h) $C_{\rm~inv}$-$V_{\rm~GS}$ characteristics measured at a frequency of 100 kHz for the GeOI FinFETs; (i) $\mu_{\rm~eff}$ vs. $Q_{\rm~inv}$, extracted using the split $C$-$V$ method. Higher $\mu_{\rm~eff}$ is achieved in GeOI FinFETs compared to Si universal mobility.