logo

SCIENCE CHINA Information Sciences, Volume 63 , Issue 10 : 202304(2020) https://doi.org/10.1007/s11432-020-2853-9

Synthesis-free directional modulation for retrodirective frequency diverse array

More info
  • ReceivedFeb 13, 2020
  • AcceptedMar 25, 2020
  • PublishedSep 16, 2020

Abstract

Combination of directional modulation (DM) and frequencydiverse array (FDA) provides a novel opportunity for enablingphysical layer security because of the enhanced ability ofdistance resolution. However, in the existing studies, thetime-varying nature of the FDA pattern is usually ignored. Inthis paper, a modified model of FDA-DM is proposed, in which theignored time factor in the previous studies is taken intoconsideration for providing a new and more accurate perspective onevaluating the security of FDA-DM. Furthermore, we reveal thatFDA-DM can achieve angle-dependent anddirectional-time-coupled-dependent security. After that, based onthe retrodirective FDA (RFDA) with a new structure, a novelsynthesis-free FDA-DM scheme is proposed for both overcoming thelimitations of the FDA-DM scheme and allowing self-tracking theposition of the pilot signal without any prior knowledge.Meanwhile, a new set of nonlinear frequency offsets, defined asrearranged linear frequency offsets (RLFOs), is also proposed forboth combining the advantages of the linear/nonlinear frequencyoffsets and bringing conveniences to practical implementation. Inaddition, the closed-form expression of the averagesignal-to-artificial-noise-ratio (SANR) is given out forevaluating the security performance of the proposed scheme.Finally, numerical results are presented to verify both theaccuracy of the proposed theoretical analysis and the superiorityof the RFDA-DM scheme.


Acknowledgment

This work was supported in part by National Natural Science Foundation of China (Grant Nos. 61620106001, U1836201).


References

[1] Daly M P, Bernhard J T. Beamsteering in Pattern Reconfigurable Arrays Using Directional Modulation. IEEE Trans Antennas Propagat, 2010, 58: 2259-2265 CrossRef ADS Google Scholar

[2] Daly M P, Daly E L, Bernhard J T. Demonstration of Directional Modulation Using a Phased Array. IEEE Trans Antennas Propagat, 2010, 58: 1545-1550 CrossRef ADS Google Scholar

[3] Shi H, Alan T. Direction dependent antenna modulation using a two element array. In: Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), Rome, 2011. 812--815. Google Scholar

[4] Shi H, Tennant A. Secure physical-layer communication based on directly modulated antenna arrays. In: Proceedings of Loughborough Antennas Propagation Conference (LAPC), Loughborough, 2012. 1--4. Google Scholar

[5] Liu F, Wang L, Xie J. Directional Modulation Technique for Linear Sparse Arrays. IEEE Access, 2019, 7: 13230-13240 CrossRef Google Scholar

[6] Ding Y, Fusco V F. A Vector Approach for the Analysis and Synthesis of Directional Modulation Transmitters. IEEE Trans Antennas Propagat, 2014, 62: 361-370 CrossRef ADS Google Scholar

[7] Daly M P, Bernhard J T. Directional Modulation Technique for Phased Arrays. IEEE Trans Antennas Propagat, 2009, 57: 2633-2640 CrossRef ADS Google Scholar

[8] Babakhani A, Rutledge D B, Hajimiri A. A near-field modulation technique using antenna reflector switching. In: Proceedings of 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, IEEE, 2008. 188--605. Google Scholar

[9] Valliappan N, Lozano A, Heath R W. Antenna Subset Modulation for Secure Millimeter-Wave Wireless Communication. IEEE Trans Commun, 2013, 61: 3231-3245 CrossRef Google Scholar

[10] Hu J, Shu F, Li J. Robust Synthesis Method for Secure Directional Modulation With Imperfect Direction Angle. IEEE Commun Lett, 2016, 20: 1084-1087 CrossRef Google Scholar

[11] Shu F, Wu X, Li J. Robust Synthesis Scheme for Secure Multi-Beam Directional Modulation in Broadcasting Systems. IEEE Access, 2016, 4: 6614-6623 CrossRef Google Scholar

[12] Ding Y, Fusco V. Orthogonal Vector Approach for Synthesis of Multi-Beam Directional Modulation Transmitters. Antennas Wirel Propag Lett, 2015, 14: 1330-1333 CrossRef ADS Google Scholar

[13] Ding Y, Fusco V. A Synthesis-Free Directional Modulation Transmitter Using Retrodirective Array. IEEE J Sel Top Signal Process, 2017, 11: 428-441 CrossRef ADS Google Scholar

[14] Lu Z, Sun L, Zhang S. Optimal power allocation for secure directional modulation networks with a full-duplex UAV user. Sci China Inf Sci, 2019, 62: 80304 CrossRef Google Scholar

[15] Du C, Zhang Z, Wang X. Optimal Duplex Mode Selection for D2D-Aided Underlaying Cellular Networks. IEEE Trans Veh Technol, 2020, 69: 3119-3134 CrossRef Google Scholar

[16] Luo S, Zhang Z, Wang S. Network for hypersonic UCAV swarms. Sci China Inf Sci, 2020, 63: 140311 CrossRef Google Scholar

[17] Rong B, Zhang Z, Zhao X. Robust Superimposed Training Designs for MIMO Relaying Systems Under General Power Constraints. IEEE Access, 2019, 7: 80404-80420 CrossRef Google Scholar

[18] Yan S, Yang N, Land I. Three Artificial-Noise-Aided Secure Transmission Schemes in Wiretap Channels. IEEE Trans Veh Technol, 2018, 67: 3669-3673 CrossRef Google Scholar

[19] Shu F, Xu L, Wang J. Artificial-Noise-Aided Secure Multicast Precoding for Directional Modulation Systems. IEEE Trans Veh Technol, 2018, 67: 6658-6662 CrossRef Google Scholar

[20] Goel S, Negi R. Guaranteeing Secrecy using Artificial Noise. IEEE Trans Wireless Commun, 2008, 7: 2180-2189 CrossRef Google Scholar

[21] Nguyen N P, Ngo H Q, Duong T Q. Secure Massive MIMO With the Artificial Noise-Aided Downlink Training. IEEE J Sel Areas Commun, 2018, 36: 802-816 CrossRef Google Scholar

[22] Wang B, Mu P C, Yang P Z. Two-step transmission with artificial noise for secure wireless SIMO communications. Sci China Inf Sci, 2015, 58: 1-13 CrossRef Google Scholar

[23] Li B, Fei Z. Probabilistic-constrained robust secure transmission for energy harvesting over MISO channels. Sci China Inf Sci, 2018, 61: 022303 CrossRef Google Scholar

[24] Wang W Q, So H C. Transmit Subaperturing for Range and Angle Estimation in Frequency Diverse Array Radar. IEEE Trans Signal Process, 2014, 62: 2000-2011 CrossRef ADS Google Scholar

[25] Wang W Q. Subarray-based frequency diverse array radar for target range-angle estimation. IEEE Trans Aerosp Electron Syst, 2014, 50: 3057-3067 CrossRef ADS Google Scholar

[26] Xu J, Liao G, Zhu S. Joint Range and Angle Estimation Using MIMO Radar With Frequency Diverse Array. IEEE Trans Signal Process, 2015, 63: 3396-3410 CrossRef ADS Google Scholar

[27] Sammartino P F, Baker C J, Griffiths H D. Frequency Diverse MIMO Techniques for Radar. IEEE Trans Aerosp Electron Syst, 2013, 49: 201-222 CrossRef ADS Google Scholar

[28] Qin S, Zhang Y D, Amin M G. Frequency Diverse Coprime Arrays With Coprime Frequency Offsets for Multitarget Localization. IEEE J Sel Top Signal Process, 2017, 11: 321-335 CrossRef ADS Google Scholar

[29] Khan W, Qureshi I M, Basit A. Range-Bins-Based MIMO Frequency Diverse Array Radar With Logarithmic Frequency Offset. Antennas Wirel Propag Lett, 2016, 15: 885-888 CrossRef ADS Google Scholar

[30] Liao Y, Wang W-q, Shao H. Symmetrical logarithmic frequency diverse array for target imaging. In: Proceedings of 2018 IEEE Radar Conference (RadarConf18), 2018. 39--42. Google Scholar

[31] Basit A, Qureshi I M, Khan W. Cognitive frequency diverse array radar with symmetric non-uniform frequency offset. Sci China Inf Sci, 2016, 59: 102314 CrossRef Google Scholar

[32] Khan W, Qureshi I M. Frequency Diverse Array Radar With Time-Dependent Frequency Offset. Antennas Wirel Propag Lett, 2014, 13: 758-761 CrossRef ADS Google Scholar

[33] Khan W, Qureshi I M, Saeed S. Frequency Diverse Array Radar With Logarithmically Increasing Frequency Offset. Antennas Wirel Propag Lett, 2015, 14: 499-502 CrossRef ADS Google Scholar

[34] Ma Y, Wei P, Zhang H. General Focusing Beamformer for FDA: Mathematical Model and Resolution Analysis. IEEE Trans Antennas Propagat, 2019, 67: 3089-3100 CrossRef ADS Google Scholar

[35] Wang W Q. DM using FDA antenna for secure transmission. 10 CrossRef Google Scholar

[36] Hu J, Yan S, Shu F. Artificial-Noise-Aided Secure Transmission With Directional Modulation Based on Random Frequency Diverse Arrays. IEEE Access, 2017, 5: 1658-1667 CrossRef Google Scholar

[37] Wei X, Xiao Y, Xiao Y, et al. Spatial and directional modulation with random frequency diverse array. In: Proceedings of 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), 2018. 976--979. Google Scholar

[38] Cheng Q, Zhu J, Xie T. Time-Invariant Angle-Range Dependent Directional Modulation Based on Time-Modulated Frequency Diverse Arrays. IEEE Access, 2017, 5: 26279-26290 CrossRef Google Scholar

[39] Ji S, Wang W Q, Chen H. On Physical-Layer Security of FDA Communications Over Rayleigh Fading Channels. IEEE Trans Cogn Commun Netw, 2019, 5: 476-490 CrossRef Google Scholar

[40] Qiu B, Tao M, Wang L. Multi-Beam Directional Modulation Synthesis Scheme Based on Frequency Diverse Array. IEEE TransInformForensic Secur, 2019, 14: 2593-2606 CrossRef Google Scholar

[41] Wang W Q. Retrodirective Frequency Diverse Array Focusing for Wireless Information and Power Transfer. IEEE J Sel Areas Commun, 2019, 37: 61-73 CrossRef Google Scholar

[42] Llombart N, Cooper K B, Dengler R J. Confocal Ellipsoidal Reflector System for a Mechanically Scanned Active Terahertz Imager. IEEE Trans Antennas Propagat, 2010, 58: 1834-1841 CrossRef ADS Google Scholar

[43] Zhang B, Liu W. Positional Modulation Design Based on Multiple Phased Antenna Arrays. IEEE Access, 2019, 7: 33898-33905 CrossRef Google Scholar

[44] Lin J, Li Q, Yang J. Physical-Layer Security for Proximal Legitimate User and Eavesdropper: A Frequency Diverse Array Beamforming Approach. IEEE TransInformForensic Secur, 2018, 13: 671-684 CrossRef Google Scholar

[45] Chen K, Yang S, Chen Y. Accurate Models of Time-Invariant Beampatterns for Frequency Diverse Arrays. IEEE Trans Antennas Propagat, 2019, 67: 3022-3029 CrossRef ADS Google Scholar

[46] Xu Y, Shi X, Li W. Low-Sidelobe Range-Angle Beamforming With FDA Using Multiple Parameter Optimization. IEEE Trans Aerosp Electron Syst, 2019, 55: 2214-2225 CrossRef ADS Google Scholar

[47] Xing C, Ma S, Zhou Y. Matrix-Monotonic Optimization for MIMO Systems. IEEE Trans Signal Process, 2015, 63: 334-348 CrossRef ADS Google Scholar

[48] Xing C, Zhao X, Xu W. A Framework on Hybrid MIMO Transceiver Design Based on Matrix-Monotonic Optimization. IEEE Trans Signal Process, 2019, 67: 3531-3546 CrossRef ADS arXiv Google Scholar

[49] Gong S, Xing C, Chen S. Secure Communications for Dual-Polarized MIMO Systems. IEEE Trans Signal Process, 2017, 65: 4177-4192 CrossRef ADS Google Scholar

[50] Gong S, Xing C, Chen S. Polarization Sensitive Array Based Physical-Layer Security. IEEE Trans Veh Technol, 2018, 67: 3964-3981 CrossRef Google Scholar

[51] Gong S, Xing C, Ma S. Secure Wideband Beamforming Design for Two-Way MIMO Relaying Systems. IEEE Trans Veh Technol, 2019, 68: 3472-3486 CrossRef Google Scholar

[52] Songqi C, Jianping A, Fei Z, et al. Burst frame synchronization in low SNR. In: Proceedings of 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC), 2013. 1284--1287. Google Scholar

[53] Xu H, Wei W, Zhang B. Joint frequency-phase estimation for pilot-limited communication systems: a novel method based on length-variable auto-correlation operator. Sci China Inf Sci, 2019, 62: 169303 CrossRef Google Scholar

[54] Liu Y, Ruan H, Wang L. The Random Frequency Diverse Array: A New Antenna Structure for Uncoupled Direction-Range Indication in Active Sensing. IEEE J Sel Top Signal Process, 2017, 11: 295-308 CrossRef ADS arXiv Google Scholar

[55] Nusenu S Y, Wang W, Ji S. Secure directional modulation using frequency diverse array antenna. In: Proceedings of 2017 IEEE Radar Conference (RadarConf), 2017. 0378--0382. Google Scholar

[56] Re P D H, Podilchak S K, Constantinides C, et al. An active retrodirective antenna element for circularly polarized wireless power transmission. In: Proceedings of 2016 IEEE Wireless Power Transfer Conference (WPTC), 2016. 1--4. Google Scholar

[57] Pon C. Retrodirective array using the heterodyne technique. IEEE Trans Antennas Propagat, 1964, 12: 176-180 CrossRef ADS Google Scholar

[58] Yao A, Wu W, Fang D. Frequency diverse phase-conjugating retrodirective array with simultaneous range-focusing capability for multi-targets. In: Proceedings of 2015 Asia-Pacific Microwave Conference (APMC), 2015. 1--3. Google Scholar

[59] Nusenu S Y, Huaizong S. Green Secure Communication Range-Angle Focusing Quadrature Spatial Modulation Using Frequency Modulated Diverse Retrodirective Array for mmWave Wireless Communications. IEEE Trans Veh Technol, 2019, 68: 6867-6877 CrossRef Google Scholar

[60] Xu Y, Li W, Qin W. The test and evaluation of GPS on-board clock. In: Proceedings of 2013 Joint European Frequency and Time Forum and International Frequency Control Symposium (EFTF/IFC), 2013. 295--298. Google Scholar

[61] Goldsmith A. Wireless Communications. Cambridge: Cambridge University Press, 2005. Google Scholar

[62] DiDomenico L D, Rebeiz G M. Digital communications using self-phased arrays. IEEE Trans Microwave Theor Techn, 2001, 49: 677-684 CrossRef ADS Google Scholar

[63] Yu J, Cali J, Zhao F, et al. A direct digital synthesis based chirp radar transmitter in 0.13 $\mu$m SiGe technology. In: Proceedings of 2013 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), 2013. 41--44. Google Scholar

[64] Kay S M. Fundamentals of Statistical Signal Processing. Upper Saddle River: Prentice Hall PTR, 1993. Google Scholar

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号