logo

SCIENCE CHINA Information Sciences, Volume 64 , Issue 2 : 120302(2021) https://doi.org/10.1007/s11432-020-2911-0

Dynamic relay access for D2D-aided low-latency and high-reliability communications

More info
  • ReceivedJan 14, 2020
  • AcceptedApr 22, 2020
  • PublishedJan 14, 2021

Abstract


Acknowledgment

This work was supported by National Natural Science Foundation of China (Grant No. 61771410) and National Key RD Program of China (Grant No. 2018YFC0807101).


References

[1] Yang P, Xiao Y, Xiao M. 6G Wireless Communications: Vision and Potential Techniques. IEEE Network, 2019, 33: 70-75 CrossRef Google Scholar

[2] Andrews J G, Buzzi S, Choi W. What Will 5G Be?. IEEE J Sel Areas Commun, 2014, 32: 1065-1082 CrossRef Google Scholar

[3] Boccardi F, Heath R W, Lozano A. Five disruptive technology directions for 5G. IEEE Commun Mag, 2014, 52: 74-80 CrossRef Google Scholar

[4] Kamel M, Hamouda W, Youssef A. Ultra-Dense Networks: A Survey. IEEE Commun Surv Tutorials, 2016, 18: 2522-2545 CrossRef Google Scholar

[5] Tehrani M N, Uysal M, Yanikomeroglu H. Device-to-device communication in 5G cellular networks: challenges, solutions, and future directions. IEEE Commun Mag, 2014, 52: 86-92 CrossRef Google Scholar

[6] Bello O, Zeadally S. Intelligent Device-to-Device Communication in the Internet of Things. IEEE Syst J, 2016, 10: 1172-1182 CrossRef ADS Google Scholar

[7] Jameel F, Hamid Z, Jabeen F. A Survey of Device-to-Device Communications: Research Issues and Challenges. IEEE Commun Surv Tutorials, 2018, 20: 2133-2168 CrossRef Google Scholar

[8] Ansari R I, Chrysostomou C, Hassan S A. 5G D2D Networks: Techniques, Challenges, and Future Prospects. IEEE Syst J, 2018, 12: 3970-3984 CrossRef ADS Google Scholar

[9] Conti M, Giordano S. Mobile ad hoc networking: milestones, challenges, and new research directions. IEEE Commun Mag, 2014, 52: 85-96 CrossRef Google Scholar

[10] Feng D, Lu L, Yuan-Wu Y. Device-to-Device Communications Underlaying Cellular Networks. IEEE Trans Commun, 2013, 61: 3541-3551 CrossRef Google Scholar

[11] Nishiyama H, Ito M, Kato N. Relay-by-smartphone: realizing multihop device-to-device communications. IEEE Commun Mag, 2014, 52: 56-65 CrossRef Google Scholar

[12] Chia-Hao Yu , Doppler K, Ribeiro C B. Resource Sharing Optimization for Device-to-Device Communication Underlaying Cellular Networks. IEEE Trans Wireless Commun, 2011, 10: 2752-2763 CrossRef Google Scholar

[13] Ma R, Xia N, Chen H H. Mode Selection, Radio Resource Allocation, and Power Coordination in D2D Communications. IEEE Wireless Commun, 2017, 24: 112-121 CrossRef Google Scholar

[14] Hoang T D, Le L B, Le-Ngoc T. Joint Mode Selection and Resource Allocation for Relay-Based D2D Communications. IEEE Commun Lett, 2017, 21: 398-401 CrossRef Google Scholar

[15] Hasan M, Hossain E, Kim D I. Resource Allocation Under Channel Uncertainties for Relay-Aided Device-to-Device Communication Underlaying LTE-A Cellular Networks. IEEE Trans Wireless Commun, 2014, 13: 2322-2338 CrossRef Google Scholar

[16] Zhou Z, Xiong F, Xu C. Energy-Efficient Vehicular Heterogeneous Networks for Green Cities. IEEE Trans Ind Inf, 2018, 14: 1522-1531 CrossRef Google Scholar

[17] Taejoon Kim , Miaomiao Dong . An Iterative Hungarian Method to Joint Relay Selection and Resource Allocation for D2D Communications. IEEE Wireless Commun Lett, 2014, 3: 625-628 CrossRef Google Scholar

[18] Ma R, Chang Y J, Chen H H. On Relay Selection Schemes for Relay-Assisted D2D Communications in LTE-A Systems. IEEE Trans Veh Technol, 2017, 66: 8303-8314 CrossRef Google Scholar

[19] Zhang H, Wang Z, Du Q. Social-Aware D2D Relay Networks for Stability Enhancement: An Optimal Stopping Approach. IEEE Trans Veh Technol, 2018, 67: 8860-8874 CrossRef Google Scholar

[20] Neely M J. Dynamic Optimization and Learning for Renewal Systems. IEEE Trans Automat Contr, 2013, 58: 32-46 CrossRef Google Scholar

[21] Gao Y, Xiao Y, Wu M. Dynamic Social-Aware Peer Selection for Cooperative Relay Management With D2D Communications. IEEE Trans Commun, 2019, 67: 3124-3139 CrossRef Google Scholar

[22] Lu J, Yao J E, Yu C S. Personal innovativeness, social influences and adoption of wireless Internet services via mobile technology. J Strategic Inf Syst, 2005, 14: 245-268 CrossRef Google Scholar

[23] Rahim A, Kong X, Xia F. Vehicular Social Networks: A survey. Pervasive Mobile Computing, 2018, 43: 96-113 CrossRef Google Scholar

[24] Du Q, Song H, Zhu X. Social-Feature Enabled Communications Among Devices Toward the Smart IoT Community. IEEE Commun Mag, 2019, 57: 130-137 CrossRef Google Scholar

[25] Chen X, Proulx B, Gong X. Exploiting Social Ties for Cooperative D2D Communications: A Mobile Social Networking Case. IEEE/ACM Trans Networking, 2015, 23: 1471-1484 CrossRef Google Scholar

[26] Zhang Z, Zhang P, Liu D. SRSM-Based Adaptive Relay Selection for D2D Communications. IEEE Internet Things J, 2018, 5: 2323-2332 CrossRef Google Scholar

[27] Cho J H, Swami A, Chen I R. A Survey on Trust Management for Mobile Ad Hoc Networks. IEEE Commun Surv Tutorials, 2011, 13: 562-583 CrossRef Google Scholar

[28] Sherchan W, Nepal S, Paris C. A survey of trust in social networks. ACM Comput Surv, 2013, 45: 1-33 CrossRef Google Scholar

[29] Meng Y, Jiang C X, La Q D, et al. Dynamic social-aware peer selection scheme for cooperative device-to-device communications. In: Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), 2017. Google Scholar

[30] Fiedler M, Hossfeld T, Tran-Gia P. A generic quantitative relationship between quality of experience and quality of service. IEEE Network, 2010, 24: 36-41 CrossRef Google Scholar

[31] Scott J, Gass R, Crowcroft J, et al. Crawdad Dataset Cambridge/Haggle (v. 2006-09-15). Technical Report. 2006. Google Scholar

  • Figure 1

    (Color online) System overview for the social-aware cellular mobile network.

  • Figure 8

    (Color online) The constraint $\bar~F/\bar~T$, $\bar~G/\bar~T$ of P1, P2versus ${G_{\text{TH}}}$ attached to different ${Y_{\text{TH}}}.$

  •   

    Algorithm 1 Relay access algorithm of ( P1): $\forall~r\in~N_{+}.$

    Require:Initialize ${\mathbi~s}[r]$, ${\Gamma}[r]$, $V$ and ${F}_i^{\text{TH}}$, ${G}_i^{\text{TH}}.$

    Output:${\mathbi~a}[r]$.

    Compute $F_i[r]$, $T_i[r]$, $\forall~i\in~\{0,~1,2,\ldots,~N\},~$ respectively;

    Update the virtual queue ${\Gamma}[r+1]$ with Eqs. (28) and (29);

    Find the optimal action in ${\cal~A}_{{\mathbi~s}[r]}$ for the optimization problem in Eq. (33).

  •   

    Algorithm 2 Relay access algorithm for ( P2): $\forall~r\in~N_{+}.$

    Require:Initialize ${\mathbi~s}[r]$, ${\Upsilon}[r]$, $V$ and ${F}_{\text{TH}}$, ${G}_{\text{TH}}.$

    Output:${\mathbi~a}[r]$.

    Compute $F[r]$, $p_i[r]$, $\forall~i\in~\{1,2,\ldots,~2N\}~$with Eqs. (18) and (41aa), respectively.

    Update the virtual queue ${\Upsilon}[r+1]$ with Eqs. (28) and (34).

    Find the optimal action in ${\cal~A}_{{\mathbi~s}[r]}$ for the optimization problem in Eq. (40).