logo

SCIENCE CHINA Information Sciences, Volume 64 , Issue 2 : 122302(2021) https://doi.org/10.1007/s11432-020-3010-6

Comprehensive analysis of polarimetric radar cross-section parameters for insect body width and length estimation

More info
  • ReceivedMar 24, 2020
  • AcceptedJul 23, 2020
  • PublishedJan 20, 2021

Abstract


Acknowledgment

This work was supported by Special Fund for Research on National Major Research Instruments (Grant No. 31727901).


References

[1] Hu G, Lim K S, Horvitz N. Mass seasonal bioflows of high-flying insect migrants. Science, 2016, 354: 1584-1587 CrossRef ADS Google Scholar

[2] Smith A D, Reynolds D R, Riley J R. The use of vertical-looking radar to continuously monitor the insect fauna flying at altitude over southern England. Bull Entomol Res, 2000, 90: 265-277 CrossRef Google Scholar

[3] Hu C, Wang Y, Wang R. An improved radar detection and tracking method for small UAV under clutter environment. Sci China Inf Sci, 2019, 62: 29306 CrossRef Google Scholar

[4] Cui K, Hu C, Wang R. Deep-learning-based extraction of the animal migration patterns from weather radar images. Sci China Inf Sci, 2020, 63: 140304 CrossRef Google Scholar

[5] Zhou C, Wang R, Hu C. Equivalent point estimation for small target groups tracking based on maximum group likelihood estimation. Sci China Inf Sci, 2020, 63: 189302 CrossRef Google Scholar

[6] Drake V A, Reynolds D R. Radar Entomology: Observing Insect Flight and Migration. London: CABI, 2012. Google Scholar

[7] Chapman J W, Drake V A, Reynolds D R. Recent Insights from Radar Studies of Insect Flight. Annu Rev Entomol, 2011, 56: 337-356 CrossRef Google Scholar

[8] Long T, Hu C, Wang R. Entomological Radar Overview: System and Signal Processing. IEEE Aerosp Electron Syst Mag, 2020, 35: 20-32 CrossRef Google Scholar

[9] Drake A. AUTOMATICALLY OPERATING RADARS FOR MONITORING INSECT PEST MIGRATIONS. Insect Sci, 2002, 9: 27-39 CrossRef Google Scholar

[10] Drake V A, Hatty S, Symons C. Insect Monitoring Radar: Maximizing Performance and Utility. Remote Sens, 2020, 12: 596 CrossRef ADS Google Scholar

[11] Hu C, Li W, Wang R. Insect flight speed estimation analysis based on a full-polarization radar. Sci China Inf Sci, 2018, 61: 109306 CrossRef Google Scholar

[12] A method for routine monitoring of the aerial migration of insects by using a vertical-looking radar. Phil Trans R Soc Lond B, 1993, 340: 393-404 CrossRef Google Scholar

[13] Hu C, Kong S, Wang R. Identification of Migratory Insects from their Physical Features using a Decision-Tree Support Vector Machine and its Application to Radar Entomology. Sci Rep, 2018, 8: 5449 CrossRef ADS Google Scholar

[14] Drake V A. Distinguishing target classes in observations from vertically pointing entomological radars. Int J Remote Sens, 2016, 37: 3811-3835 CrossRef ADS Google Scholar

[15] Hao Z, Drake V A, Taylor J R. Insect Target Classes Discerned from Entomological Radar Data. Remote Sens, 2020, 12: 673 CrossRef ADS Google Scholar

[16] Drake V A, Chapman J W, Lim K S. Ventral-aspect radar cross sections and polarization patterns of insects at X band and their relation to size and form. Int J Remote Sens, 2017, 38: 5022-5044 CrossRef ADS Google Scholar

[17] Aldhous A C. An investigation of the polarization dependence of insect radar cross sections at constant aspect. Dissertation for Ph.D. Degree. Cranfield: Cranfield Institute of Technology, 1989. Google Scholar

[18] Chapman J W, Smith A D, Woiwod I P. Development of vertical-looking radar technology for monitoring insect migration. Comput Electron Agr, 2002, 35: 95-110 CrossRef Google Scholar

[19] Hobbs S E, Aldhous A C. Insect ventral radar cross-section polarisation dependence measurements for radar entomology. IEE Proc Radar Sonar Navig, 2006, 153: 502-508 CrossRef Google Scholar

[20] Hu C, Li W, Wang R. Insect Biological Parameter Estimation Based on the Invariant Target Parameters of the Scattering Matrix. IEEE Trans Geosci Remote Sens, 2019, 57: 6212-6225 CrossRef ADS Google Scholar

[21] Zrnic D S, Ryzhkov A V. Observations of insects and birds with a polarimetric radar. IEEE Trans Geosci Remote Sens, 1998, 36: 661-668 CrossRef ADS Google Scholar

[22] Melnikov V M, Istok M J, Westbrook J K. Asymmetric Radar Echo Patterns from Insects. J Atmos Ocean Tech, 2015, 32: 659-674 CrossRef ADS Google Scholar

[23] Hu C, Li W, Wang R. Accurate Insect Orientation Extraction Based on Polarization Scattering Matrix Estimation. IEEE Geosci Remote Sens Lett, 2017, 14: 1755-1759 CrossRef ADS Google Scholar

[24] Li W, Hu C, Wang R. Experimental validations of insect orientation extraction based on fully polarimetric measurement. 9 CrossRef Google Scholar

[25] Hu C, Li W D, Wang R, et al. Discrimination of Parallel and Perpendicular Insects Based on Relative Phase of Scattering Matrix Eigenvalues. IEEE T Geosci Remote, 2020. Google Scholar

[26] Mirkovic D, Stepanian P M, Kelly J F. Electromagnetic Model Reliably Predicts Radar Scattering Characteristics of Airborne Organisms. Sci Rep, 2016, 6: 35637 CrossRef ADS Google Scholar

  • Figure 1

    (Color online) Relations of insect body widths to polarimetric RCS parameters: (a) $a_{0}$; (b) $a_{0}$ $\&$ $\alpha_{2}$; (c) $\nu$; (d) $d$. The dots represent the 159 insect specimens. The curves and the wireframe mesh represent the fits to body widths.

  • Figure 2

    (Color online) The fitted insect body widths and $\lg{d}$ with different order polynomials: (a) 2nd-order; (b) 3rd-order;protect łinebreak (c) 4th-order; (d) 5th-order. The dots represent the 159 insect specimens. The curves are the fitting results.

  • Figure 3

    (Color online) Relations of insect body lengths to polarimetric RCS parameters: (a) $a_{0}$; (b) $a_{0}$ $\&$ $\alpha_{2}$; (c) $\nu$; (d) $d$. The dots represent the 159 insect specimens. The curves and the wireframe mesh represent the fits to body lengths.

  • Figure 4

    (Color online) Performances comparison of ${a_0}$, ${a_0}$ $\&$ ${\alpha~_2}$, $\nu~$ and $d$ methods for different body size samples: (a) body length estimation; (b) body width estimation.

  • Figure 5

    (Color online) Relationships between MRE and SNR for (a) body length estimation; (b) body width estimation.

  • Table 1  

    Table 1Comparison of polarimetric RCS parameters for insect body width estimation

    Parameter Fitting method $R$tnotea) ($P$ valuetnoteb) MRE (%)
    $\nu$ 3rd-order polynomial 0.92 ($P<0.001$) 13.25
    $d$ 3rd-order polynomial 0.90 ($P<0.001$) 15.53
    $a_0$ 3rd-order polynomial 0.86 ($P<0.001$) 18.16
    $a_0$ $\&$ $\alpha_2$ Regression analysis 0.92 ($P<0.001$) 13.32
  • Table 2  

    Table 2Comparison of polarimetric RCS parameters for insect body length estimation

    Parameter Fitting method $R$ ($P$ value) MRE (%)
    $\nu$ 3rd-order polynomial 0.88 ($P<0.001$) 13.53
    $d$ 3rd-order polynomial 0.88 ($P<0.001$) 14.30
    $a_0$ 3rd-order polynomial 0.85 ($P<0.001$) 16.07
    $a_0$ $\&$ $\alpha_2$ Regression analysis 0.87 ($P<0.001$) 14.18