References
[1]
Green R O, Chrien T G, Enmark H T. First results from the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sens Environ, 1987, 44: 127--143.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Green R O, Chrien T G, Enmark H T. First results from the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sens Environ, 1987, 44: 127--143&
[2]
UAV hyperspectral and lidar data and their fusion for arid and semi-arid land vegetation monitoring.
Remote Sens Ecol Conserv,
2018, 4: 20-33
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=UAV hyperspectral and lidar data and their fusion for arid and semi-arid land vegetation monitoring&publication_year=2018&journal=Remote Sens Ecol Conserv&volume=4&pages=20-33
[3]
Govender M, Chetty K, Bulcock H. A review of hyperspectral remote sensing and its application in vegetation and water resource studies. Water Sa, 2007, 33: 145--152.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Govender M, Chetty K, Bulcock H. A review of hyperspectral remote sensing and its application in vegetation and water resource studies. Water Sa, 2007, 33: 145--152&
[4]
Luo B, Yang C, Chanussot J, et al. Crop yield estimation based on unsupervised linear unmixing of multidate hyperspectral imagery. IEEE Trans Geosci Remote Sens, 2012, 51(1): 162-173.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Luo B, Yang C, Chanussot J, et al. Crop yield estimation based on unsupervised linear unmixing of multidate hyperspectral imagery. IEEE Trans Geosci Remote Sens, 2012, 51(1): 162-173&
[5]
Morier
T,
Cambouris
A N,
Chokmani
K.
In-Season Nitrogen Status Assessment and Yield Estimation Using Hyperspectral Vegetation Indices in a Potato Crop.
Agronomy J,
2015, 107: 1295-1309
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=In-Season Nitrogen Status Assessment and Yield Estimation Using Hyperspectral Vegetation Indices in a Potato Crop&author=Morier T&author=Cambouris A N&author=Chokmani K&publication_year=2015&journal=Agronomy J&volume=107&pages=1295-1309
[6]
Moroni
M,
Lupo
E,
Marra
E.
Hyperspectral Image Analysis in Environmental Monitoring: Setup of a New Tunable Filter Platform.
Procedia Environ Sci,
2013, 19: 885-894
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hyperspectral Image Analysis in Environmental Monitoring: Setup of a New Tunable Filter Platform&author=Moroni M&author=Lupo E&author=Marra E&publication_year=2013&journal=Procedia Environ Sci&volume=19&pages=885-894
[7]
Honkavaara E, Hakala T, Markelin L, et al. Autonomous hyperspectral UAS photogrammetry for environmental monitoring applications. ISPRS Archives, 2014, XL-1: 155-159.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Honkavaara E, Hakala T, Markelin L, et al. Autonomous hyperspectral UAS photogrammetry for environmental monitoring applications. ISPRS Archives, 2014, XL-1: 155-159&
[8]
Luft
L,
Neumann
C,
Freude
M.
Hyperspectral modeling of ecological indicators - A new approach for monitoring former military training areas.
Ecol Indicators,
2014, 46: 264-285
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hyperspectral modeling of ecological indicators - A new approach for monitoring former military training areas&author=Luft L&author=Neumann C&author=Freude M&publication_year=2014&journal=Ecol Indicators&volume=46&pages=264-285
[9]
Mucher C A, Kooistra L, Vermeulen M, et al. Quantifying structure of Natura 2000 heathland habitats using spectral mixture analysis and segmentation techniques on hyperspectral imagery. Ecol Indic, 2013, 33: 71-81.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mucher C A, Kooistra L, Vermeulen M, et al. Quantifying structure of Natura 2000 heathland habitats using spectral mixture analysis and segmentation techniques on hyperspectral imagery. Ecol Indic, 2013, 33: 71-81&
[10]
Briottet X, Boucher Y, Dimmeler A, et al. Military applications of hyperspectral imagery. In: Proceedings of SPIE, Defense and Security Symposium, Orlando, 2006. 6239: 62390B.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Briottet X, Boucher Y, Dimmeler A, et al. Military applications of hyperspectral imagery. In: Proceedings of SPIE, Defense and Security Symposium, Orlando, 2006. 6239: 62390B&
[11]
Kastek M, Piatkowski T, Dulski R, et al. Multispectral and hyperspectral measurements of soldier's camouflage equipment. In: Proceedings of SPIE Defense, Security, and Sensing, Baltimore, 2012. 8382: 83820K.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kastek M, Piatkowski T, Dulski R, et al. Multispectral and hyperspectral measurements of soldier's camouflage equipment. In: Proceedings of SPIE Defense, Security, and Sensing, Baltimore, 2012. 8382: 83820K&
[12]
Richards J A, Jia X. Remote Sensing Digital Image Analysis. Berlin: Springer, 1999.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Richards J A, Jia X. Remote Sensing Digital Image Analysis. Berlin: Springer, 1999&
[13]
Tong
Q,
Xue
Y,
Zhang
L.
Progress in Hyperspectral Remote Sensing Science and Technology in China Over the Past Three Decades.
IEEE J Sel Top Appl Earth Observations Remote Sens,
2014, 7: 70-91
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Progress in Hyperspectral Remote Sensing Science and Technology in China Over the Past Three Decades&author=Tong Q&author=Xue Y&author=Zhang L&publication_year=2014&journal=IEEE J Sel Top Appl Earth Observations Remote Sens&volume=7&pages=70-91
[14]
Gerhart T, Sunu J, Lieu L, et al. Detection and tracking of gas plumes in LWIR hyperspectral video sequence data. In: Proceedings of SPIE Defense, Security, and Sensing, Baltimore, 2013. 8743: 87430J.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gerhart T, Sunu J, Lieu L, et al. Detection and tracking of gas plumes in LWIR hyperspectral video sequence data. In: Proceedings of SPIE Defense, Security, and Sensing, Baltimore, 2013. 8743: 87430J&
[15]
Tochon G, Chanussot J, Gilles J, et al. Gas Plume Detection and Tracking in Hyperspectral Video Sequences using Binary Partition Trees. In: Proceedings of IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Lausanne, 2014. 1--4.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tochon G, Chanussot J, Gilles J, et al. Gas Plume Detection and Tracking in Hyperspectral Video Sequences using Binary Partition Trees. In: Proceedings of IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Lausanne, 2014. 1--4&
[16]
Shaw G, Manolakis D. Signal processing for hyperspectral image exploitation. IEEE Signal Process Mag, 2002, 19(1): 12-16.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shaw G, Manolakis D. Signal processing for hyperspectral image exploitation. IEEE Signal Process Mag, 2002, 19(1): 12-16&
[17]
Stein
D W J,
Beaven
S G,
Hoff
L E.
Anomaly detection from hyperspectral imagery.
IEEE Signal Process Mag,
2002, 19: 58-69
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Anomaly detection from hyperspectral imagery&author=Stein D W J&author=Beaven S G&author=Hoff L E&publication_year=2002&journal=IEEE Signal Process Mag&volume=19&pages=58-69
[18]
Manolakis
D,
Shaw
G.
Detection algorithms for hyperspectral imaging applications.
IEEE Signal Process Mag,
2002, 19: 29-43
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Detection algorithms for hyperspectral imaging applications&author=Manolakis D&author=Shaw G&publication_year=2002&journal=IEEE Signal Process Mag&volume=19&pages=29-43
[19]
Keshava
N,
Mustard
J F.
Spectral unmixing.
IEEE Signal Process Mag,
2002, 19: 44-57
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Spectral unmixing&author=Keshava N&author=Mustard J F&publication_year=2002&journal=IEEE Signal Process Mag&volume=19&pages=44-57
[20]
Landgrebe D. Hyperspectral image data analysis. IEEE Signal Process Mag, 2002, 19(1): 17-28.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Landgrebe D. Hyperspectral image data analysis. IEEE Signal Process Mag, 2002, 19(1): 17-28&
[21]
Camps-Valls G, Tuia D, Bruzzone L, et al. Advances in hyperspectral image classification. IEEE Signal Process Mag, 2014, 31(1): 45-54.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Camps-Valls G, Tuia D, Bruzzone L, et al. Advances in hyperspectral image classification. IEEE Signal Process Mag, 2014, 31(1): 45-54&
[22]
Manolakis D, Truslow E, Pieper M, et al. Detection Algorithms in Hyperspectral Imaging Systems: An Overview of Practical Algorithms. IEEE Signal Process Mag, 2014, 31(1): 24-33.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Manolakis D, Truslow E, Pieper M, et al. Detection Algorithms in Hyperspectral Imaging Systems: An Overview of Practical Algorithms. IEEE Signal Process Mag, 2014, 31(1): 24-33&
[23]
Nasrabadi N M. Hyperspectral Target Detection: An Overview of Current and Future Challenges. IEEE Signal Process Mag, 2014, 31(31): 34-44.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nasrabadi N M. Hyperspectral Target Detection: An Overview of Current and Future Challenges. IEEE Signal Process Mag, 2014, 31(31): 34-44&
[24]
Wei Li, Qian Du. A Survey on Representation-based Classification and Detection in Hyperspectral Remote Sensing Imagery. Pattern Recognit Lett, 2015, 83: 115-123.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wei Li, Qian Du. A Survey on Representation-based Classification and Detection in Hyperspectral Remote Sensing Imagery. Pattern Recognit Lett, 2015, 83: 115-123&
[25]
Arce
G R,
Brady
D J,
Carin
L.
Compressive Coded Aperture Spectral Imaging: An Introduction.
IEEE Signal Process Mag,
2014, 31: 105-115
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Compressive Coded Aperture Spectral Imaging: An Introduction&author=Arce G R&author=Brady D J&author=Carin L&publication_year=2014&journal=IEEE Signal Process Mag&volume=31&pages=105-115
[26]
Willett, R, Duarte, M, Davenport, M, et al. Sparsity and Structure in Hyperspectral Imaging: Sensing, Reconstruction, and Target Detection. IEEE Signal Process Mag, 2014, 31(1): 116-126.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Willett, R, Duarte, M, Davenport, M, et al. Sparsity and Structure in Hyperspectral Imaging: Sensing, Reconstruction, and Target Detection. IEEE Signal Process Mag, 2014, 31(1): 116-126&
[27]
Sami ul Haq
Q,
Tao
L,
Sun
F.
A Fast and Robust Sparse Approach for Hyperspectral Data Classification Using a Few Labeled Samples.
IEEE Trans Geosci Remote Sens,
2012, 50: 2287-2302
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Fast and Robust Sparse Approach for Hyperspectral Data Classification Using a Few Labeled Samples&author=Sami ul Haq Q&author=Tao L&author=Sun F&publication_year=2012&journal=IEEE Trans Geosci Remote Sens&volume=50&pages=2287-2302
[28]
Chen Y, Nasrabadi N M, Tran T D. Sparse Representation for Target Detection in Hyperspectral Imagery. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2011, 5(3): 629-640.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chen Y, Nasrabadi N M, Tran T D. Sparse Representation for Target Detection in Hyperspectral Imagery. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2011, 5(3): 629-640&
[29]
Chen
J,
Jiao
L.
Hyperspectral imagery classification using local collaborative representation.
Int J Remote Sens,
2015, 36: 734-748
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hyperspectral imagery classification using local collaborative representation&author=Chen J&author=Jiao L&publication_year=2015&journal=Int J Remote Sens&volume=36&pages=734-748
[30]
Li
W,
Du
Q.
Collaborative Representation for Hyperspectral Anomaly Detection.
IEEE Trans Geosci Remote Sens,
2015, 53: 1463-1474
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Collaborative Representation for Hyperspectral Anomaly Detection&author=Li W&author=Du Q&publication_year=2015&journal=IEEE Trans Geosci Remote Sens&volume=53&pages=1463-1474
[31]
Zhang H, Li J, Huang Y, et al. A Nonlocal Weighted Joint Sparse Representation Classification Method for Hyperspectral Imagery. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2014, 7(6): 2056-2065.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhang H, Li J, Huang Y, et al. A Nonlocal Weighted Joint Sparse Representation Classification Method for Hyperspectral Imagery. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2014, 7(6): 2056-2065&
[32]
Li
J,
Zhang
H,
Zhang
L.
Hyperspectral Anomaly Detection by the Use of Background Joint Sparse Representation.
IEEE J Sel Top Appl Earth Observations Remote Sens,
2015, 8: 2523-2533
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hyperspectral Anomaly Detection by the Use of Background Joint Sparse Representation&author=Li J&author=Zhang H&author=Zhang L&publication_year=2015&journal=IEEE J Sel Top Appl Earth Observations Remote Sens&volume=8&pages=2523-2533
[33]
Chen
Y,
Nasrabadi
N M,
Tran
T D.
Simultaneous Joint Sparsity Model for Target Detection in Hyperspectral Imagery.
IEEE Geosci Remote Sens Lett,
2011, 8: 676-680
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Simultaneous Joint Sparsity Model for Target Detection in Hyperspectral Imagery&author=Chen Y&author=Nasrabadi N M&author=Tran T D&publication_year=2011&journal=IEEE Geosci Remote Sens Lett&volume=8&pages=676-680
[34]
Li
W,
Du
Q.
Joint Within-Class Collaborative Representation for Hyperspectral Image Classification.
IEEE J Sel Top Appl Earth Observations Remote Sens,
2014, 7: 2200-2208
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Joint Within-Class Collaborative Representation for Hyperspectral Image Classification&author=Li W&author=Du Q&publication_year=2014&journal=IEEE J Sel Top Appl Earth Observations Remote Sens&volume=7&pages=2200-2208
[35]
Li
J,
Zhang
H,
Huang
Y.
Hyperspectral Image Classification by Nonlocal Joint Collaborative Representation With a Locally Adaptive Dictionary.
IEEE Trans Geosci Remote Sens,
2014, 52: 3707-3719
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hyperspectral Image Classification by Nonlocal Joint Collaborative Representation With a Locally Adaptive Dictionary&author=Li J&author=Zhang H&author=Huang Y&publication_year=2014&journal=IEEE Trans Geosci Remote Sens&volume=52&pages=3707-3719
[36]
Chen
Y,
Nasrabadi
N M,
Tran
T D.
Hyperspectral Image Classification via Kernel Sparse Representation.
IEEE Trans Geosci Remote Sens,
2013, 51: 217-231
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hyperspectral Image Classification via Kernel Sparse Representation&author=Chen Y&author=Nasrabadi N M&author=Tran T D&publication_year=2013&journal=IEEE Trans Geosci Remote Sens&volume=51&pages=217-231
[37]
Liu
J,
Wu
Z,
Wei
Z.
Spatial-Spectral Kernel Sparse Representation for Hyperspectral Image Classification.
IEEE J Sel Top Appl Earth Observations Remote Sens,
2013, 6: 2462-2471
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Spatial-Spectral Kernel Sparse Representation for Hyperspectral Image Classification&author=Liu J&author=Wu Z&author=Wei Z&publication_year=2013&journal=IEEE J Sel Top Appl Earth Observations Remote Sens&volume=6&pages=2462-2471
[38]
Li W, Du Q, Xiong M. Kernel Collaborative Representation With Tikhonov Regularization for Hyperspectral Image Classification. IEEE Geosci Remote Sens Lett, 2015, 12(1): 48-52.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li W, Du Q, Xiong M. Kernel Collaborative Representation With Tikhonov Regularization for Hyperspectral Image Classification. IEEE Geosci Remote Sens Lett, 2015, 12(1): 48-52&
[39]
Li
J,
Zhang
H,
Zhang
L.
Column-generation kernel nonlocal joint collaborative representation for hyperspectral image classification.
ISPRS J Photogrammetry Remote Sens,
2014, 94: 25-36
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Column-generation kernel nonlocal joint collaborative representation for hyperspectral image classification&author=Li J&author=Zhang H&author=Zhang L&publication_year=2014&journal=ISPRS J Photogrammetry Remote Sens&volume=94&pages=25-36
[40]
Camps-Valls
G,
Bruzzone
L.
Kernel-Based Methods for Hyperspectral Image Classification.
IEEE Trans Geosci Remote Sens,
2005, 43: 1351-1362
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kernel-Based Methods for Hyperspectral Image Classification&author=Camps-Valls G&author=Bruzzone L&publication_year=2005&journal=IEEE Trans Geosci Remote Sens&volume=43&pages=1351-1362
[41]
Mountrakis
G,
Im
J,
Ogole
C.
Support vector machines in remote sensing: A review.
ISPRS J Photogrammetry Remote Sens,
2011, 66: 247-259
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Support vector machines in remote sensing: A review&author=Mountrakis G&author=Im J&author=Ogole C&publication_year=2011&journal=ISPRS J Photogrammetry Remote Sens&volume=66&pages=247-259
[42]
Niazmardi
S,
Demir
B,
Bruzzone
L.
Multiple Kernel Learning for Remote Sensing Image Classification.
IEEE Trans Geosci Remote Sens,
2018, 56: 1425-1443
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Multiple Kernel Learning for Remote Sensing Image Classification&author=Niazmardi S&author=Demir B&author=Bruzzone L&publication_year=2018&journal=IEEE Trans Geosci Remote Sens&volume=56&pages=1425-1443
[43]
Gu
Y,
Chanussot
J,
Jia
X.
Multiple Kernel Learning for Hyperspectral Image Classification: A Review.
IEEE Trans Geosci Remote Sens,
2017, 55: 6547-6565
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Multiple Kernel Learning for Hyperspectral Image Classification: A Review&author=Gu Y&author=Chanussot J&author=Jia X&publication_year=2017&journal=IEEE Trans Geosci Remote Sens&volume=55&pages=6547-6565
[44]
Gu
Y,
Wang
C,
You
D.
Representative Multiple Kernel Learning for Classification in Hyperspectral Imagery.
IEEE Trans Geosci Remote Sens,
2012, 50: 2852-2865
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Representative Multiple Kernel Learning for Classification in Hyperspectral Imagery&author=Gu Y&author=Wang C&author=You D&publication_year=2012&journal=IEEE Trans Geosci Remote Sens&volume=50&pages=2852-2865
[45]
Yanfeng Gu
,
Qingwang Wang
,
Xiuping Jia
.
A Novel MKL Model of Integrating LiDAR Data and MSI for Urban Area Classification.
IEEE Trans Geosci Remote Sens,
2015, 53: 5312-5326
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Novel MKL Model of Integrating LiDAR Data and MSI for Urban Area Classification&author=Yanfeng Gu &author=Qingwang Wang &author=Xiuping Jia &publication_year=2015&journal=IEEE Trans Geosci Remote Sens&volume=53&pages=5312-5326
[46]
Gu Y, Wang Q, Wang H, et al. Multiple kernel learning via low-rank nonnegative matrix factorization for classification of hyperspectral imagery. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2014, 8(6): 2739-2751.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gu Y, Wang Q, Wang H, et al. Multiple kernel learning via low-rank nonnegative matrix factorization for classification of hyperspectral imagery. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2014, 8(6): 2739-2751&
[47]
Wang
Q,
Gu
Y,
Tuia
D.
Discriminative Multiple Kernel Learning for Hyperspectral Image Classification.
IEEE Trans Geosci Remote Sens,
2016, 54: 3912-3927
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Discriminative Multiple Kernel Learning for Hyperspectral Image Classification&author=Wang Q&author=Gu Y&author=Tuia D&publication_year=2016&journal=IEEE Trans Geosci Remote Sens&volume=54&pages=3912-3927
[48]
Liu
T,
Gu
Y,
Jia
X.
Class-Specific Sparse Multiple Kernel Learning for Spectral-Spatial Hyperspectral Image Classification.
IEEE Trans Geosci Remote Sens,
2016, 54: 7351-7365
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Class-Specific Sparse Multiple Kernel Learning for Spectral-Spatial Hyperspectral Image Classification&author=Liu T&author=Gu Y&author=Jia X&publication_year=2016&journal=IEEE Trans Geosci Remote Sens&volume=54&pages=7351-7365
[49]
Rakotomamonjy A, Bach F, Stephane C, et al. SimpleMKL. J Mach Learn Res, 2008, 9(3): 2491-2521.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Rakotomamonjy A, Bach F, Stephane C, et al. SimpleMKL. J Mach Learn Res, 2008, 9(3): 2491-2521&
[50]
Gu
Y,
Gao
G,
Zuo
D.
Model Selection and Classification With Multiple Kernel Learning for Hyperspectral Images via Sparsity.
IEEE J Sel Top Appl Earth Observations Remote Sens,
2014, 7: 2119-2130
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Model Selection and Classification With Multiple Kernel Learning for Hyperspectral Images via Sparsity&author=Gu Y&author=Gao G&author=Zuo D&publication_year=2014&journal=IEEE J Sel Top Appl Earth Observations Remote Sens&volume=7&pages=2119-2130
[51]
Gu Y, Wang Q, Xie B. Multiple kernel sparse representation for airborne LiDAR data classification. IEEE Trans Geosci Remote Sens, 2016, 55(2): 1085-1105.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gu Y, Wang Q, Xie B. Multiple kernel sparse representation for airborne LiDAR data classification. IEEE Trans Geosci Remote Sens, 2016, 55(2): 1085-1105&
[52]
Gu Y, Liu H. Sample-Screening MKL Method via Boosting Strategy for Hyperspectral Image Classification. Neurocomputing, 2015, 173: 1630-1639.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gu Y, Liu H. Sample-Screening MKL Method via Boosting Strategy for Hyperspectral Image Classification. Neurocomputing, 2015, 173: 1630-1639&
[53]
Wang Y, Gu Y, Gao G, et al. Hyperspectral image classification with multiple kernel Boosting algorithm. In: Proceedings of IEEE International Conference on Image Processing, Paris, 2015. 5047--5051.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wang Y, Gu Y, Gao G, et al. Hyperspectral image classification with multiple kernel Boosting algorithm. In: Proceedings of IEEE International Conference on Image Processing, Paris, 2015. 5047--5051&
[54]
Gu
Y,
Liu
T,
Jia
X.
Nonlinear Multiple Kernel Learning With Multiple-Structure-Element Extended Morphological Profiles for Hyperspectral Image Classification.
IEEE Trans Geosci Remote Sens,
2016, 54: 3235-3247
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nonlinear Multiple Kernel Learning With Multiple-Structure-Element Extended Morphological Profiles for Hyperspectral Image Classification&author=Gu Y&author=Liu T&author=Jia X&publication_year=2016&journal=IEEE Trans Geosci Remote Sens&volume=54&pages=3235-3247
[55]
Lunga
D,
Prasad
S,
Crawford
M M.
Manifold-Learning-Based Feature Extraction for Classification of Hyperspectral Data: A Review of Advances in Manifold Learning.
IEEE Signal Process Mag,
2014, 31: 55-66
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Manifold-Learning-Based Feature Extraction for Classification of Hyperspectral Data: A Review of Advances in Manifold Learning&author=Lunga D&author=Prasad S&author=Crawford M M&publication_year=2014&journal=IEEE Signal Process Mag&volume=31&pages=55-66
[56]
Hong
D,
Yokoya
N,
Zhu
X X.
Learning a Robust Local Manifold Representation for Hyperspectral Dimensionality Reduction.
IEEE J Sel Top Appl Earth Observations Remote Sens,
2017, 10: 2960-2975
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Learning a Robust Local Manifold Representation for Hyperspectral Dimensionality Reduction&author=Hong D&author=Yokoya N&author=Zhu X X&publication_year=2017&journal=IEEE J Sel Top Appl Earth Observations Remote Sens&volume=10&pages=2960-2975
[57]
Jun He
,
Lei Zhang
,
Qing Wang
.
Using Diffusion Geometric Coordinates for Hyperspectral Imagery Representation.
IEEE Geosci Remote Sens Lett,
2009, 6: 767-771
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Using Diffusion Geometric Coordinates for Hyperspectral Imagery Representation&author=Jun He &author=Lei Zhang &author=Qing Wang &publication_year=2009&journal=IEEE Geosci Remote Sens Lett&volume=6&pages=767-771
[58]
Mohan
A,
Sapiro
G,
Bosch
E.
Spatially Coherent Nonlinear Dimensionality Reduction and Segmentation of Hyperspectral Images.
IEEE Geosci Remote Sens Lett,
2007, 4: 206-210
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Spatially Coherent Nonlinear Dimensionality Reduction and Segmentation of Hyperspectral Images&author=Mohan A&author=Sapiro G&author=Bosch E&publication_year=2007&journal=IEEE Geosci Remote Sens Lett&volume=4&pages=206-210
[59]
Ma L, Zhang X, Yu X, et al. Spatial regularized local manifold learning for classification of hyperspectral images. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2015, 9(2): 609-624.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ma L, Zhang X, Yu X, et al. Spatial regularized local manifold learning for classification of hyperspectral images. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2015, 9(2): 609-624&
[60]
Ma L, Crawford M M, Yang X, et al. Local-manifold-learning-based graph construction for semisupervised hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 2014, 53(5): 2832-2844.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ma L, Crawford M M, Yang X, et al. Local-manifold-learning-based graph construction for semisupervised hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 2014, 53(5): 2832-2844&
[61]
Ziemann A K, Messinger D W. An adaptive locally linear embedding manifold learning approach for hyperspectral target detection. In: Proceedings of SPIE Defense and Security, Baltimore, 2015. 9472: 94720O.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ziemann A K, Messinger D W. An adaptive locally linear embedding manifold learning approach for hyperspectral target detection. In: Proceedings of SPIE Defense and Security, Baltimore, 2015. 9472: 94720O&
[62]
Ziemann A K, Theiler J, Messinger D W. Hyperspectral target detection using manifold learning and multiple target spectra. In: Proceedings of IEEE Applied Imagery Pattern Recognition Workshop (AIPR), Washington, 2015. 1--7.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ziemann A K, Theiler J, Messinger D W. Hyperspectral target detection using manifold learning and multiple target spectra. In: Proceedings of IEEE Applied Imagery Pattern Recognition Workshop (AIPR), Washington, 2015. 1--7&
[63]
Heylen
R,
Scheunders
P.
Calculation of Geodesic Distances in Nonlinear Mixing Models: Application to the Generalized Bilinear Model.
IEEE Geosci Remote Sens Lett,
2012, 9: 644-648
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Calculation of Geodesic Distances in Nonlinear Mixing Models: Application to the Generalized Bilinear Model&author=Heylen R&author=Scheunders P&publication_year=2012&journal=IEEE Geosci Remote Sens Lett&volume=9&pages=644-648
[64]
Chi
J,
Crawford
M.
Selection of Landmark Points on Nonlinear Manifolds for Spectral Unmixing Using Local Homogeneity.
GeoSci Remote Sens Lett IEEE,
2012, 10: 711-715
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Selection of Landmark Points on Nonlinear Manifolds for Spectral Unmixing Using Local Homogeneity&author=Chi J&author=Crawford M&publication_year=2012&journal=GeoSci Remote Sens Lett IEEE&volume=10&pages=711-715
[65]
Chen Y, Lin Z, Zhao X, et al. Deep learning-based classification of hyperspectral data. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2014, 7(6): 2094-2107.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chen Y, Lin Z, Zhao X, et al. Deep learning-based classification of hyperspectral data. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2014, 7(6): 2094-2107&
[66]
Gao
L,
Gu
D,
Zhuang
L.
Combining t-Distributed Stochastic Neighbor Embedding With Convolutional Neural Networks for Hyperspectral Image Classification.
IEEE Geosci Remote Sens Lett,
2020, 17: 1368-1372
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Combining t-Distributed Stochastic Neighbor Embedding With Convolutional Neural Networks for Hyperspectral Image Classification&author=Gao L&author=Gu D&author=Zhuang L&publication_year=2020&journal=IEEE Geosci Remote Sens Lett&volume=17&pages=1368-1372
[67]
Zhang
L,
Zhang
L,
Du
B.
Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art.
IEEE Geosci Remote Sens Mag,
2016, 4: 22-40
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art&author=Zhang L&author=Zhang L&author=Du B&publication_year=2016&journal=IEEE Geosci Remote Sens Mag&volume=4&pages=22-40
[68]
Audebert
N,
Le Saux
B,
Lefevre
S.
Deep Learning for Classification of Hyperspectral Data: A Comparative Review.
IEEE Geosci Remote Sens Mag,
2019, 7: 159-173
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Deep Learning for Classification of Hyperspectral Data: A Comparative Review&author=Audebert N&author=Le Saux B&author=Lefevre S&publication_year=2019&journal=IEEE Geosci Remote Sens Mag&volume=7&pages=159-173
[69]
Rasti B, Hong D, Hang R, et al. Feature Extraction for Hyperspectral Imagery: The Evolution from Shallow to Deep. IEEE Geosci Remote Sens Mag,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Rasti B, Hong D, Hang R, et al. Feature Extraction for Hyperspectral Imagery: The Evolution from Shallow to Deep. IEEE Geosci Remote Sens Mag,&
[70]
Ghamisi P, Maggiori E, Li S T, et al. New Frontiers in Spectral-Spatial Hyperspectral Image Classification: The Latest Advances Based on Mathematical Morphology, Markov Random Fields, Segmentation, Sparse Representation, and Deep Learning. IEEE Geosci Remote Sens Mag, 2018, 6(3): 10-43.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ghamisi P, Maggiori E, Li S T, et al. New Frontiers in Spectral-Spatial Hyperspectral Image Classification: The Latest Advances Based on Mathematical Morphology, Markov Random Fields, Segmentation, Sparse Representation, and Deep Learning. IEEE Geosci Remote Sens Mag, 2018, 6(3): 10-43&
[71]
Xu
F,
Hu
C,
Li
J.
Special focus on deep learning in remote sensing image processing.
Sci China Inf Sci,
2020, 63: 140300
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Special focus on deep learning in remote sensing image processing&author=Xu F&author=Hu C&author=Li J&publication_year=2020&journal=Sci China Inf Sci&volume=63&pages=140300
[72]
Li
J,
Li
Y,
He
L.
Spatio-temporal fusion for remote sensing data: an overview and new benchmark.
Sci China Inf Sci,
2020, 63: 140301
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Spatio-temporal fusion for remote sensing data: an overview and new benchmark&author=Li J&author=Li Y&author=He L&publication_year=2020&journal=Sci China Inf Sci&volume=63&pages=140301
[73]
Li
Y,
Li
J,
He
L.
A new sensor bias-driven spatio-temporal fusion model based on convolutional neural networks.
Sci China Inf Sci,
2020, 63: 140302
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A new sensor bias-driven spatio-temporal fusion model based on convolutional neural networks&author=Li Y&author=Li J&author=He L&publication_year=2020&journal=Sci China Inf Sci&volume=63&pages=140302
[74]
Hou
X,
Ao
W,
Song
Q.
FUSAR-Ship: building a high-resolution SAR-AIS matchup dataset of Gaofen-3 for ship detection and recognition.
Sci China Inf Sci,
2020, 63: 140303
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=FUSAR-Ship: building a high-resolution SAR-AIS matchup dataset of Gaofen-3 for ship detection and recognition&author=Hou X&author=Ao W&author=Song Q&publication_year=2020&journal=Sci China Inf Sci&volume=63&pages=140303
[75]
Cui
K,
Hu
C,
Wang
R.
Deep-learning-based extraction of the animal migration patterns from weather radar images.
Sci China Inf Sci,
2020, 63: 140304
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Deep-learning-based extraction of the animal migration patterns from weather radar images&author=Cui K&author=Hu C&author=Wang R&publication_year=2020&journal=Sci China Inf Sci&volume=63&pages=140304
[76]
He
N,
Fang
L,
Plaza
A.
Hybrid first and second order attention Unet for building segmentation in remote sensing images.
Sci China Inf Sci,
2020, 63: 140305
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hybrid first and second order attention Unet for building segmentation in remote sensing images&author=He N&author=Fang L&author=Plaza A&publication_year=2020&journal=Sci China Inf Sci&volume=63&pages=140305
[77]
Liu
X,
Qiao
Y,
Xiong
Y.
Cascade conditional generative adversarial nets for spatial-spectral hyperspectral sample generation.
Sci China Inf Sci,
2020, 63: 140306
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cascade conditional generative adversarial nets for spatial-spectral hyperspectral sample generation&author=Liu X&author=Qiao Y&author=Xiong Y&publication_year=2020&journal=Sci China Inf Sci&volume=63&pages=140306
[78]
Gu
Y,
Liu
H,
Wang
T.
Deep feature extraction and motion representation for satellite video scene classification.
Sci China Inf Sci,
2020, 63: 140307
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Deep feature extraction and motion representation for satellite video scene classification&author=Gu Y&author=Liu H&author=Wang T&publication_year=2020&journal=Sci China Inf Sci&volume=63&pages=140307
[79]
Lahat
D,
Adali
T,
Jutten
C.
Multimodal Data Fusion: An Overview of Methods, Challenges, and Prospects.
Proc IEEE,
2015, 103: 1449-1477
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Multimodal Data Fusion: An Overview of Methods, Challenges, and Prospects&author=Lahat D&author=Adali T&author=Jutten C&publication_year=2015&journal=Proc IEEE&volume=103&pages=1449-1477
[80]
Dalla Mura
M,
Prasad
S,
Pacifici
F.
Challenges and Opportunities of Multimodality and Data Fusion in Remote Sensing.
Proc IEEE,
2015, 103: 1585-1601
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Challenges and Opportunities of Multimodality and Data Fusion in Remote Sensing&author=Dalla Mura M&author=Prasad S&author=Pacifici F&publication_year=2015&journal=Proc IEEE&volume=103&pages=1585-1601
[81]
Gomez-Chova
L,
Tuia
D,
Moser
G.
Multimodal Classification of Remote Sensing Images: A Review and Future Directions.
Proc IEEE,
2015, 103: 1560-1584
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Multimodal Classification of Remote Sensing Images: A Review and Future Directions&author=Gomez-Chova L&author=Tuia D&author=Moser G&publication_year=2015&journal=Proc IEEE&volume=103&pages=1560-1584
[82]
Camps-Valls
G,
Gomez-Chova
L,
Munoz-Mari
J.
Composite Kernels for Hyperspectral Image Classification.
IEEE Geosci Remote Sens Lett,
2006, 3: 93-97
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Composite Kernels for Hyperspectral Image Classification&author=Camps-Valls G&author=Gomez-Chova L&author=Munoz-Mari J&publication_year=2006&journal=IEEE Geosci Remote Sens Lett&volume=3&pages=93-97
[83]
Tuia
D,
Ratle
F,
Pozdnoukhov
A.
Multisource Composite Kernels for Urban-Image Classification.
IEEE Geosci Remote Sens Lett,
2010, 7: 88-92
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Multisource Composite Kernels for Urban-Image Classification&author=Tuia D&author=Ratle F&author=Pozdnoukhov A&publication_year=2010&journal=IEEE Geosci Remote Sens Lett&volume=7&pages=88-92
[84]
Volpi
M,
Camps-Valls
G,
Tuia
D.
Spectral alignment of multi-temporal cross-sensor images with automated kernel canonical correlation analysis.
ISPRS J Photogrammetry Remote Sens,
2015, 107: 50-63
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Spectral alignment of multi-temporal cross-sensor images with automated kernel canonical correlation analysis&author=Volpi M&author=Camps-Valls G&author=Tuia D&publication_year=2015&journal=ISPRS J Photogrammetry Remote Sens&volume=107&pages=50-63
[85]
Tuia
D,
Camps-Valls
G,
Matasci
G.
Learning Relevant Image Features With Multiple-Kernel Classification.
IEEE Trans Geosci Remote Sens,
2010, 48: 3780-3791
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Learning Relevant Image Features With Multiple-Kernel Classification&author=Tuia D&author=Camps-Valls G&author=Matasci G&publication_year=2010&journal=IEEE Trans Geosci Remote Sens&volume=48&pages=3780-3791
[86]
Liu
W,
Qin
R.
A MultiKernel Domain Adaptation Method for Unsupervised Transfer Learning on Cross-Source and Cross-Region Remote Sensing Data Classification.
IEEE Trans Geosci Remote Sens,
2020, 58: 4279-4289
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A MultiKernel Domain Adaptation Method for Unsupervised Transfer Learning on Cross-Source and Cross-Region Remote Sensing Data Classification&author=Liu W&author=Qin R&publication_year=2020&journal=IEEE Trans Geosci Remote Sens&volume=58&pages=4279-4289
[87]
Li
S,
Yin
H,
Fang
L.
Remote Sensing Image Fusion via Sparse Representations Over Learned Dictionaries.
IEEE Trans Geosci Remote Sens,
2013, 51: 4779-4789
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Remote Sensing Image Fusion via Sparse Representations Over Learned Dictionaries&author=Li S&author=Yin H&author=Fang L&publication_year=2013&journal=IEEE Trans Geosci Remote Sens&volume=51&pages=4779-4789
[88]
Cheng
M,
Wang
C,
Li
J.
Sparse Representation Based Pansharpening Using Trained Dictionary.
IEEE Geosci Remote Sens Lett,
2014, 11: 293-297
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sparse Representation Based Pansharpening Using Trained Dictionary&author=Cheng M&author=Wang C&author=Li J&publication_year=2014&journal=IEEE Geosci Remote Sens Lett&volume=11&pages=293-297
[89]
Ghahremani
M,
Ghassemian
H.
Remote Sensing Image Fusion Using Ripplet Transform and Compressed Sensing.
IEEE Geosci Remote Sens Lett,
2015, 12: 502-506
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Remote Sensing Image Fusion Using Ripplet Transform and Compressed Sensing&author=Ghahremani M&author=Ghassemian H&publication_year=2015&journal=IEEE Geosci Remote Sens Lett&volume=12&pages=502-506
[90]
Zhao C, Gao X, Emery W J, et al. An Integrated Spatio-Spectral-Temporal Sparse Representation Method for Fusing Remote-Sensing Images With Different Resolutions. IEEE Trans Geosci Remote Sens, 2018, 56(6): 1-13.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhao C, Gao X, Emery W J, et al. An Integrated Spatio-Spectral-Temporal Sparse Representation Method for Fusing Remote-Sensing Images With Different Resolutions. IEEE Trans Geosci Remote Sens, 2018, 56(6): 1-13&
[91]
Vargas
E,
Arguello
H,
Tourneret
J Y.
Spectral Image Fusion From Compressive Measurements Using Spectral Unmixing and a Sparse Representation of Abundance Maps.
IEEE Trans Geosci Remote Sens,
2019, 57: 5043-5053
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Spectral Image Fusion From Compressive Measurements Using Spectral Unmixing and a Sparse Representation of Abundance Maps&author=Vargas E&author=Arguello H&author=Tourneret J Y&publication_year=2019&journal=IEEE Trans Geosci Remote Sens&volume=57&pages=5043-5053
[92]
Romero A, Gatta C, Camps-Valls G. Unsupervised Deep Feature Extraction for Remote Sensing Image Classification. IEEE Trans Geosci Remote Sens, 2015, 54(99):1-14.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Romero A, Gatta C, Camps-Valls G. Unsupervised Deep Feature Extraction for Remote Sensing Image Classification. IEEE Trans Geosci Remote Sens, 2015, 54(99):1-14&
[93]
Tuia
D,
Flamary
R,
Courty
N.
Multiclass feature learning for hyperspectral image classification: Sparse and hierarchical solutions.
ISPRS J Photogrammetry Remote Sens,
2015, 105: 272-285
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Multiclass feature learning for hyperspectral image classification: Sparse and hierarchical solutions&author=Tuia D&author=Flamary R&author=Courty N&publication_year=2015&journal=ISPRS J Photogrammetry Remote Sens&volume=105&pages=272-285
[94]
Zhang
H,
Ni
W,
Yan
W.
Registration of Multimodal Remote Sensing Image Based on Deep Fully Convolutional Neural Network.
IEEE J Sel Top Appl Earth Observations Remote Sens,
2019, 12: 3028-3042
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Registration of Multimodal Remote Sensing Image Based on Deep Fully Convolutional Neural Network&author=Zhang H&author=Ni W&author=Yan W&publication_year=2019&journal=IEEE J Sel Top Appl Earth Observations Remote Sens&volume=12&pages=3028-3042
[95]
Benedetti
P,
Ienco
D,
Gaetano
R.
$M^3\text{Fusion}$: A Deep Learning Architecture for Multiscale Multimodal Multitemporal Satellite Data Fusion.
IEEE J Sel Top Appl Earth Observations Remote Sens,
2018, 11: 4939-4949
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=$M^3\text{Fusion}$: A Deep Learning Architecture for Multiscale Multimodal Multitemporal Satellite Data Fusion&author=Benedetti P&author=Ienco D&author=Gaetano R&publication_year=2018&journal=IEEE J Sel Top Appl Earth Observations Remote Sens&volume=11&pages=4939-4949
[96]
Tuia
D,
Volpi
M,
Trolliet
M.
Semisupervised Manifold Alignment of Multimodal Remote Sensing Images.
IEEE Trans Geosci Remote Sens,
2014, 52: 7708-7720
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Semisupervised Manifold Alignment of Multimodal Remote Sensing Images&author=Tuia D&author=Volpi M&author=Trolliet M&publication_year=2014&journal=IEEE Trans Geosci Remote Sens&volume=52&pages=7708-7720
[97]
Matasci
G,
Volpi
M,
Kanevski
M.
Semisupervised Transfer Component Analysis for Domain Adaptation in Remote Sensing Image Classification.
IEEE Trans Geosci Remote Sens,
2015, 53: 3550-3564
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Semisupervised Transfer Component Analysis for Domain Adaptation in Remote Sensing Image Classification&author=Matasci G&author=Volpi M&author=Kanevski M&publication_year=2015&journal=IEEE Trans Geosci Remote Sens&volume=53&pages=3550-3564
[98]
Chi M, Sun Z, Qin Y, et al. A novel methodology to label urban remote sensing images based on location-based social media photos. Proc IEEE, 2017, 105(10): 1926-1936.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chi M, Sun Z, Qin Y, et al. A novel methodology to label urban remote sensing images based on location-based social media photos. Proc IEEE, 2017, 105(10): 1926-1936&
[99]
Li
J,
Benediktsson
J A,
Zhang
B.
Spatial Technology and Social Media in Remote Sensing: A Survey.
Proc IEEE,
2017, 105: 1855-1864
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Spatial Technology and Social Media in Remote Sensing: A Survey&author=Li J&author=Benediktsson J A&author=Zhang B&publication_year=2017&journal=Proc IEEE&volume=105&pages=1855-1864
[100]
Wang
H,
Skau
E,
Krim
H.
Fusing Heterogeneous Data: A Case for Remote Sensing and Social Media.
IEEE Trans Geosci Remote Sens,
2018, 56: 6956-6968
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fusing Heterogeneous Data: A Case for Remote Sensing and Social Media&author=Wang H&author=Skau E&author=Krim H&publication_year=2018&journal=IEEE Trans Geosci Remote Sens&volume=56&pages=6956-6968
[101]
Qi
L,
Li
J,
Wang
Y.
Urban Observation: Integration of Remote Sensing and Social Media Data.
IEEE J Sel Top Appl Earth Observations Remote Sens,
2019, 12: 4252-4264
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Urban Observation: Integration of Remote Sensing and Social Media Data&author=Qi L&author=Li J&author=Wang Y&publication_year=2019&journal=IEEE J Sel Top Appl Earth Observations Remote Sens&volume=12&pages=4252-4264
[102]
Singh
A.
Review Article Digital change detection techniques using remotely-sensed data.
Int J Remote Sens,
1989, 10: 989-1003
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Review Article Digital change detection techniques using remotely-sensed data&author=Singh A&publication_year=1989&journal=Int J Remote Sens&volume=10&pages=989-1003
[103]
Heo J, Fitzhugh T W. A standardized radiometric normalization method for change detection using remotely sensed imagery. Photogramm Eng Remote Sens, 2000, 66(2): 173-181.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Heo J, Fitzhugh T W. A standardized radiometric normalization method for change detection using remotely sensed imagery. Photogramm Eng Remote Sens, 2000, 66(2): 173-181&
[104]
Schowengerdt R A. Remote Sensing: Models and Methods for Image Processing, 2nd ed. New York: Academic, 1997.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Schowengerdt R A. Remote Sensing: Models and Methods for Image Processing, 2nd ed. New York: Academic, 1997&
[105]
Gonzalez R, Woods R. Digital Image Processing, 2nd ed. Englewood Cliffs: Prentice-Hall, 2002.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gonzalez R, Woods R. Digital Image Processing, 2nd ed. Englewood Cliffs: Prentice-Hall, 2002&
[106]
Inamdar
S,
Bovolo
F,
Bruzzone
L.
Multidimensional Probability Density Function Matching for Preprocessing of Multitemporal Remote Sensing Images.
IEEE Trans Geosci Remote Sens,
2008, 46: 1243-1252
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Multidimensional Probability Density Function Matching for Preprocessing of Multitemporal Remote Sensing Images&author=Inamdar S&author=Bovolo F&author=Bruzzone L&publication_year=2008&journal=IEEE Trans Geosci Remote Sens&volume=46&pages=1243-1252
[107]
Gorretta N, Hadoux X, Jay S. Multi-temporal hyperspectral data classification without explicit reflectance correction. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, 2015. 4228--4231.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gorretta N, Hadoux X, Jay S. Multi-temporal hyperspectral data classification without explicit reflectance correction. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, 2015. 4228--4231&
[108]
Hemissi S, Farah I R, Ettabaa K S, et al. A robust evidential fisher discriminant for multi-temporal hyperspectral images classification. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, 2012. 4275--4278.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hemissi S, Farah I R, Ettabaa K S, et al. A robust evidential fisher discriminant for multi-temporal hyperspectral images classification. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, 2012. 4275--4278&
[109]
Jin H, Li P, Fan W. Land cover classification using multitemporal CHRIS/PROBA images and multitemporal texture. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Boston, 2008. 742--745.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Jin H, Li P, Fan W. Land cover classification using multitemporal CHRIS/PROBA images and multitemporal texture. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Boston, 2008. 742--745&
[110]
Prasad S, Bruce L M, Kalluri H. A robust multi-classifier decision fusion framework for hyperspectral, multi-temporal classification. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Boston, 2008, 273--276.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Prasad S, Bruce L M, Kalluri H. A robust multi-classifier decision fusion framework for hyperspectral, multi-temporal classification. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Boston, 2008, 273--276&
[111]
Tuia
D,
Persello
C,
Bruzzone
L.
Domain Adaptation for the Classification of Remote Sensing Data: An Overview of Recent Advances.
IEEE Geosci Remote Sens Mag,
2016, 4: 41-57
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Domain Adaptation for the Classification of Remote Sensing Data: An Overview of Recent Advances&author=Tuia D&author=Persello C&author=Bruzzone L&publication_year=2016&journal=IEEE Geosci Remote Sens Mag&volume=4&pages=41-57
[112]
Ye
M,
Qian
Y,
Zhou
J.
Dictionary Learning-Based Feature-Level Domain Adaptation for Cross-Scene Hyperspectral Image Classification.
IEEE Trans Geosci Remote Sens,
2017, 55: 1544-1562
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dictionary Learning-Based Feature-Level Domain Adaptation for Cross-Scene Hyperspectral Image Classification&author=Ye M&author=Qian Y&author=Zhou J&publication_year=2017&journal=IEEE Trans Geosci Remote Sens&volume=55&pages=1544-1562
[113]
Kim W, Crawford M M. Adaptive classification for hyperspectral image data using manifold regularization kernel machines. IEEE Trans Geosci Remote Sens, 2010, 48(11): 4110-4121.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kim W, Crawford M M. Adaptive classification for hyperspectral image data using manifold regularization kernel machines. IEEE Trans Geosci Remote Sens, 2010, 48(11): 4110-4121&
[114]
Yang
H L,
Crawford
M M.
Spectral and Spatial Proximity-Based Manifold Alignment for Multitemporal Hyperspectral Image Classification.
IEEE Trans Geosci Remote Sens,
2016, 54: 51-64
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Spectral and Spatial Proximity-Based Manifold Alignment for Multitemporal Hyperspectral Image Classification&author=Yang H L&author=Crawford M M&publication_year=2016&journal=IEEE Trans Geosci Remote Sens&volume=54&pages=51-64
[115]
Yang
H L,
Crawford
M M.
Domain Adaptation With Preservation of Manifold Geometry for Hyperspectral Image Classification.
IEEE J Sel Top Appl Earth Observations Remote Sens,
2016, 9: 543-555
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Domain Adaptation With Preservation of Manifold Geometry for Hyperspectral Image Classification&author=Yang H L&author=Crawford M M&publication_year=2016&journal=IEEE J Sel Top Appl Earth Observations Remote Sens&volume=9&pages=543-555
[116]
Nielsen A A, Canty M J. Kernel principal component and maximum autocorrelation factor analyses for change detection. In: Proceedongs of SPIE Remote Sensing, Berlin, 2009. 7477: 74770T.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nielsen A A, Canty M J. Kernel principal component and maximum autocorrelation factor analyses for change detection. In: Proceedongs of SPIE Remote Sensing, Berlin, 2009. 7477: 74770T&
[117]
Nielsen
A A.
The Regularized Iteratively Reweighted MAD Method for Change Detection in Multi- and Hyperspectral Data.
IEEE Trans Image Process,
2007, 16: 463-478
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=The Regularized Iteratively Reweighted MAD Method for Change Detection in Multi- and Hyperspectral Data&author=Nielsen A A&publication_year=2007&journal=IEEE Trans Image Process&volume=16&pages=463-478
[118]
Xia J, Yokoya N, Iwasaki A. Ensemble of transfer component analysis for domain adaptation in hyperspectral remote sensing image classification. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, 2017. 4762--4765.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Xia J, Yokoya N, Iwasaki A. Ensemble of transfer component analysis for domain adaptation in hyperspectral remote sensing image classification. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, 2017. 4762--4765&
[119]
Samat
A,
Gamba
P,
Abuduwaili
J.
Geodesic Flow Kernel Support Vector Machine for Hyperspectral Image Classification by Unsupervised Subspace Feature Transfer.
Remote Sens,
2016, 8: 234
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Geodesic Flow Kernel Support Vector Machine for Hyperspectral Image Classification by Unsupervised Subspace Feature Transfer&author=Samat A&author=Gamba P&author=Abuduwaili J&publication_year=2016&journal=Remote Sens&volume=8&pages=234
[120]
Gao G, Gu Y. Tensorized principal component alignment: A unified framework for multimodal high-resolution images classification. IEEE Trans Geosci Remote Sens, 2018, 57(1): 46-61.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gao G, Gu Y. Tensorized principal component alignment: A unified framework for multimodal high-resolution images classification. IEEE Trans Geosci Remote Sens, 2018, 57(1): 46-61&
[121]
Li T, Gu Y. Joint tensor subspace alignment on multi-angular remote sensing image. In: Proceedings of IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, 2018. 1--5.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li T, Gu Y. Joint tensor subspace alignment on multi-angular remote sensing image. In: Proceedings of IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, 2018. 1--5&
[122]
Qin
Y,
Bruzzone
L,
Li
B.
Tensor Alignment Based Domain Adaptation for Hyperspectral Image Classification.
IEEE Trans Geosci Remote Sens,
2019, 57: 9290-9307
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tensor Alignment Based Domain Adaptation for Hyperspectral Image Classification&author=Qin Y&author=Bruzzone L&author=Li B&publication_year=2019&journal=IEEE Trans Geosci Remote Sens&volume=57&pages=9290-9307
[123]
Persello
C,
Bruzzone
L.
Active Learning for Domain Adaptation in the Supervised Classification of Remote Sensing Images.
IEEE Trans Geosci Remote Sens,
2012, 50: 4468-4483
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Active Learning for Domain Adaptation in the Supervised Classification of Remote Sensing Images&author=Persello C&author=Bruzzone L&publication_year=2012&journal=IEEE Trans Geosci Remote Sens&volume=50&pages=4468-4483
[124]
Banerjee
B,
Bovolo
F,
Bhattacharya
A.
A Novel Graph-Matching-Based Approach for Domain Adaptation in Classification of Remote Sensing Image Pair.
IEEE Trans Geosci Remote Sens,
2015, 53: 4045-4062
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Novel Graph-Matching-Based Approach for Domain Adaptation in Classification of Remote Sensing Image Pair&author=Banerjee B&author=Bovolo F&author=Bhattacharya A&publication_year=2015&journal=IEEE Trans Geosci Remote Sens&volume=53&pages=4045-4062
[125]
Tuia
D,
Munoz-Mari
J,
Gomez-Chova
L.
Graph Matching for Adaptation in Remote Sensing.
IEEE Trans Geosci Remote Sens,
2013, 51: 329-341
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Graph Matching for Adaptation in Remote Sensing&author=Tuia D&author=Munoz-Mari J&author=Gomez-Chova L&publication_year=2013&journal=IEEE Trans Geosci Remote Sens&volume=51&pages=329-341
[126]
Jacobs J P, Thoonen G, Tuia D, et al. Domain adaptation with hidden Markov random fields. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Melbourne, 2013. 3112--3115.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Jacobs J P, Thoonen G, Tuia D, et al. Domain adaptation with hidden Markov random fields. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Melbourne, 2013. 3112--3115&
[127]
Ettabaa K S, Hamdi M A, Salem R B. SVM for hyperspectral images classification based on 3D spectral signature. In: Proceedings of International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Sousse, 2014. 42--47.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ettabaa K S, Hamdi M A, Salem R B. SVM for hyperspectral images classification based on 3D spectral signature. In: Proceedings of International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Sousse, 2014. 42--47&
[128]
Hemissi S, Farah I R, Ettabaa K S, et al. Multi-Spectro-Temporal Analysis of Hyperspectral Imagery Based on 3-D Spectral Modeling and Multilinear Algebra. IEEE Trans Geosci Remote Sens, 2012, 51(1): 199-216.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hemissi S, Farah I R, Ettabaa K S, et al. Multi-Spectro-Temporal Analysis of Hyperspectral Imagery Based on 3-D Spectral Modeling and Multilinear Algebra. IEEE Trans Geosci Remote Sens, 2012, 51(1): 199-216&
[129]
Teke M, Yardimci Y. Classification of crops using multitemporal hyperion images. In: Proceedings of IEEE International Conference on Agro-Geoinformatics, Istanbul, 2015. 282--287.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Teke M, Yardimci Y. Classification of crops using multitemporal hyperion images. In: Proceedings of IEEE International Conference on Agro-Geoinformatics, Istanbul, 2015. 282--287&
[130]
Othman E, Bazi Y, Alajlan N, et al. Three-layer convex network for domain adaptation in multitemporal VHR images. IEEE Geosci Remote Sens Lett, 2016, 13(3): 354-358.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Othman E, Bazi Y, Alajlan N, et al. Three-layer convex network for domain adaptation in multitemporal VHR images. IEEE Geosci Remote Sens Lett, 2016, 13(3): 354-358&
[131]
Elshamli A, Taylor G W, Berg A, et al. Domain Adaptation Using Representation Learning for the Classification of Remote Sensing Images. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2017, 99: 1-12.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Elshamli A, Taylor G W, Berg A, et al. Domain Adaptation Using Representation Learning for the Classification of Remote Sensing Images. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2017, 99: 1-12&
[132]
Yang
J,
Zhao
Y Q,
Chan
J C W.
Learning and Transferring Deep Joint Spectral-Spatial Features for Hyperspectral Classification.
IEEE Trans Geosci Remote Sens,
2017, 55: 4729-4742
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Learning and Transferring Deep Joint Spectral-Spatial Features for Hyperspectral Classification&author=Yang J&author=Zhao Y Q&author=Chan J C W&publication_year=2017&journal=IEEE Trans Geosci Remote Sens&volume=55&pages=4729-4742
[133]
Hong
D,
Yokoya
N,
Ge
N.
Learnable manifold alignment (LeMA): A semi-supervised cross-modality learning framework for land cover and land use classification.
ISPRS J Photogrammetry Remote Sens,
2019, 147: 193-205
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Learnable manifold alignment (LeMA): A semi-supervised cross-modality learning framework for land cover and land use classification&author=Hong D&author=Yokoya N&author=Ge N&publication_year=2019&journal=ISPRS J Photogrammetry Remote Sens&volume=147&pages=193-205
[134]
Kernel Manifold Alignment for Domain Adaptation.
PLoS ONE,
2016, 11: e0148655
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kernel Manifold Alignment for Domain Adaptation&publication_year=2016&journal=PLoS ONE&volume=11&pages=e0148655
[135]
Li
X,
Zhang
L,
Du
B.
On Gleaning Knowledge From Cross Domains by Sparse Subspace Correlation Analysis for Hyperspectral Image Classification.
IEEE Trans Geosci Remote Sens,
2019, 57: 3204-3220
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=On Gleaning Knowledge From Cross Domains by Sparse Subspace Correlation Analysis for Hyperspectral Image Classification&author=Li X&author=Zhang L&author=Du B&publication_year=2019&journal=IEEE Trans Geosci Remote Sens&volume=57&pages=3204-3220
[136]
Qin
Y,
Bruzzone
L,
Li
B.
Cross-Domain Collaborative Learning via Cluster Canonical Correlation Analysis and Random Walker for Hyperspectral Image Classification.
IEEE Trans Geosci Remote Sens,
2019, 57: 3952-3966
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cross-Domain Collaborative Learning via Cluster Canonical Correlation Analysis and Random Walker for Hyperspectral Image Classification&author=Qin Y&author=Bruzzone L&author=Li B&publication_year=2019&journal=IEEE Trans Geosci Remote Sens&volume=57&pages=3952-3966
[137]
Hong
D,
Yokoya
N,
Chanussot
J.
CoSpace: Common Subspace Learning From Hyperspectral-Multispectral Correspondences.
IEEE Trans Geosci Remote Sens,
2019, 57: 4349-4359
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=CoSpace: Common Subspace Learning From Hyperspectral-Multispectral Correspondences&author=Hong D&author=Yokoya N&author=Chanussot J&publication_year=2019&journal=IEEE Trans Geosci Remote Sens&volume=57&pages=4349-4359
[138]
Liu
T,
Zhang
X,
Gu
Y.
Unsupervised Cross-Temporal Classification of Hyperspectral Images With Multiple Geodesic Flow Kernel Learning.
IEEE Trans Geosci Remote Sens,
2019, 57: 9688-9701
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Unsupervised Cross-Temporal Classification of Hyperspectral Images With Multiple Geodesic Flow Kernel Learning&author=Liu T&author=Zhang X&author=Gu Y&publication_year=2019&journal=IEEE Trans Geosci Remote Sens&volume=57&pages=9688-9701
[139]
Gong B, Shi Y, Sha F, et al. Geodesic flow kernel for unsupervised domain adaptation. In: Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, 2012. 2066--2073.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gong B, Shi Y, Sha F, et al. Geodesic flow kernel for unsupervised domain adaptation. In: Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, 2012. 2066--2073&
[140]
Liu
S,
Bruzzone
L,
Bovolo
F.
Sequential Spectral Change Vector Analysis for Iteratively Discovering and Detecting Multiple Changes in Hyperspectral Images.
IEEE Trans Geosci Remote Sens,
2015, 53: 4363-4378
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sequential Spectral Change Vector Analysis for Iteratively Discovering and Detecting Multiple Changes in Hyperspectral Images&author=Liu S&author=Bruzzone L&author=Bovolo F&publication_year=2015&journal=IEEE Trans Geosci Remote Sens&volume=53&pages=4363-4378
[141]
Liu
S,
Bruzzone
L,
Bovolo
F.
Unsupervised Multitemporal Spectral Unmixing for Detecting Multiple Changes in Hyperspectral Images.
IEEE Trans Geosci Remote Sens,
2016, 54: 2733-2748
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Unsupervised Multitemporal Spectral Unmixing for Detecting Multiple Changes in Hyperspectral Images&author=Liu S&author=Bruzzone L&author=Bovolo F&publication_year=2016&journal=IEEE Trans Geosci Remote Sens&volume=54&pages=2733-2748
[142]
Cesmeci D, Karaca A C, Erturk A, et al. Hyperspectral change detection by multi-band census transform. In: Proceedings of IEEE Geoscience and Remote Sensing Symposium (IGARSS), Quebec, 2014. 2969--2972.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cesmeci D, Karaca A C, Erturk A, et al. Hyperspectral change detection by multi-band census transform. In: Proceedings of IEEE Geoscience and Remote Sensing Symposium (IGARSS), Quebec, 2014. 2969--2972&
[143]
Wu
C,
Zhang
L,
Du
B.
Hyperspectral anomaly change detection with slow feature analysis.
Neurocomputing,
2015, 151: 175-187
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hyperspectral anomaly change detection with slow feature analysis&author=Wu C&author=Zhang L&author=Du B&publication_year=2015&journal=Neurocomputing&volume=151&pages=175-187
[144]
Du
B,
Ru
L,
Wu
C.
Unsupervised Deep Slow Feature Analysis for Change Detection in Multi-Temporal Remote Sensing Images.
IEEE Trans Geosci Remote Sens,
2019, 57: 9976-9992
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Unsupervised Deep Slow Feature Analysis for Change Detection in Multi-Temporal Remote Sensing Images&author=Du B&author=Ru L&author=Wu C&publication_year=2019&journal=IEEE Trans Geosci Remote Sens&volume=57&pages=9976-9992
[145]
Yuan
Y,
Lv
H,
Lu
X.
Semi-supervised change detection method for multi-temporal hyperspectral images.
Neurocomputing,
2015, 148: 363-375
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Semi-supervised change detection method for multi-temporal hyperspectral images&author=Yuan Y&author=Lv H&author=Lu X&publication_year=2015&journal=Neurocomputing&volume=148&pages=363-375
[146]
Wu C, Zhang L, Du B. Targeted change detection for stacked multi-temporal hyperspectral image. In: Proceedings of IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Shanghai, 2012. 1--4.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wu C, Zhang L, Du B. Targeted change detection for stacked multi-temporal hyperspectral image. In: Proceedings of IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Shanghai, 2012. 1--4&
[147]
Hazel
G G.
Object-level change detection in spectral imagery.
IEEE Trans Geosci Remote Sens,
2001, 39: 553-561
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Object-level change detection in spectral imagery&author=Hazel G G&publication_year=2001&journal=IEEE Trans Geosci Remote Sens&volume=39&pages=553-561
[148]
Messinger D W, Richardson M, Casey J. Analysis of a multitemporal hyperspectral dataset over a common target scene. In: Proceedings of SPIE, Defense and Security Symposium, Orlando, 2006. 6233: 62331I.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Messinger D W, Richardson M, Casey J. Analysis of a multitemporal hyperspectral dataset over a common target scene. In: Proceedings of SPIE, Defense and Security Symposium, Orlando, 2006. 6233: 62331I&
[149]
Sun Y, Zhang X, Shuai T, et al. Radiometric normalization of multitemporal hyperspectral satellite images. In: Proceedings of IEEE Geoscience and Remote Sensing Symposium (IGARSS), Quebec, 2014. 4204--4207.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sun Y, Zhang X, Shuai T, et al. Radiometric normalization of multitemporal hyperspectral satellite images. In: Proceedings of IEEE Geoscience and Remote Sensing Symposium (IGARSS), Quebec, 2014. 4204--4207&
[150]
Halimi A, Dobigeon N, Toumeret J Y, et al. Unmixing multitemporal hyperspectral images accounting for endmember variability. In: Proceedings of IEEE European Signal Processing Conference (EUSIPCO), Nice, 2015. 1656--1660.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Halimi A, Dobigeon N, Toumeret J Y, et al. Unmixing multitemporal hyperspectral images accounting for endmember variability. In: Proceedings of IEEE European Signal Processing Conference (EUSIPCO), Nice, 2015. 1656--1660&
[151]
Thouvenin P A, Dobigeon N, Tourneret J Y. A hierarchical Bayesian model accounting for endmember variability and abrupt spectral changes to unmix multitemporal hyperspectral images. IEEE Transactions on Computational Imaging, 2017, 4(1): 32-45.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Thouvenin P A, Dobigeon N, Tourneret J Y. A hierarchical Bayesian model accounting for endmember variability and abrupt spectral changes to unmix multitemporal hyperspectral images. IEEE Transactions on Computational Imaging, 2017, 4(1): 32-45&
[152]
Thouvenin P A, Dobigeon N, Tourneret J Y. Unmixing multitemporal hyperspectral images with variability: an online algorithm. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, 2016. 3351--3355.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Thouvenin P A, Dobigeon N, Tourneret J Y. Unmixing multitemporal hyperspectral images with variability: an online algorithm. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, 2016. 3351--3355&
[153]
Thouvenin
P A,
Dobigeon
N,
Tourneret
J Y.
Online Unmixing of Multitemporal Hyperspectral Images Accounting for Spectral Variability.
IEEE Trans Image Process,
2016, 25: 3979-3990
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Online Unmixing of Multitemporal Hyperspectral Images Accounting for Spectral Variability&author=Thouvenin P A&author=Dobigeon N&author=Tourneret J Y&publication_year=2016&journal=IEEE Trans Image Process&volume=25&pages=3979-3990
[154]
Henrot
S,
Chanussot
J,
Jutten
C.
Dynamical Spectral Unmixing of Multitemporal Hyperspectral Images.
IEEE Trans Image Process,
2016, 25: 3219-3232
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dynamical Spectral Unmixing of Multitemporal Hyperspectral Images&author=Henrot S&author=Chanussot J&author=Jutten C&publication_year=2016&journal=IEEE Trans Image Process&volume=25&pages=3219-3232
[155]
Licciardi
G A,
Del Frate
F.
Pixel Unmixing in Hyperspectral Data by Means of Neural Networks.
IEEE Trans Geosci Remote Sens,
2011, 49: 4163-4172
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Pixel Unmixing in Hyperspectral Data by Means of Neural Networks&author=Licciardi G A&author=Del Frate F&publication_year=2011&journal=IEEE Trans Geosci Remote Sens&volume=49&pages=4163-4172
[156]
Erturk
A,
Plaza
A.
Informative Change Detection by Unmixing for Hyperspectral Images.
IEEE Geosci Remote Sens Lett,
2015, 12: 1252-1256
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Informative Change Detection by Unmixing for Hyperspectral Images&author=Erturk A&author=Plaza A&publication_year=2015&journal=IEEE Geosci Remote Sens Lett&volume=12&pages=1252-1256
[157]
Liu S, Bruzzone L, Bovolo F, et al. Multitemporal spectral unmixing for change detection in hyperspectral images. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, 2015. 4165--4168.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Liu S, Bruzzone L, Bovolo F, et al. Multitemporal spectral unmixing for change detection in hyperspectral images. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, 2015. 4165--4168&
[158]
Erturk A, Iordache M D, Plaza A. Sparse unmixing-based change detection for multitemporal hyperspectral images. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2015, 9(2): 708-719.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Erturk A, Iordache M D, Plaza A. Sparse unmixing-based change detection for multitemporal hyperspectral images. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2015, 9(2): 708-719&
[159]
Erturk A, Iordache M D, Plaza A. Sparse unmixing with dictionary pruning for hyperspectral change detection. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2016, 10(1): 321-330.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Erturk A, Iordache M D, Plaza A. Sparse unmixing with dictionary pruning for hyperspectral change detection. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2016, 10(1): 321-330&
[160]
Torres-Madronero M C, Velez-Reyes M, van Bloem S J, et al. Multi-temporal unmixing analysis of Hyperion images over the Guanica Dry Forest. In: Proceedings of IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Lisbon, 2011. 1--4.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Torres-Madronero M C, Velez-Reyes M, van Bloem S J, et al. Multi-temporal unmixing analysis of Hyperion images over the Guanica Dry Forest. In: Proceedings of IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Lisbon, 2011. 1--4&
[161]
Cerra D, Muller R, Reinartz P. Cloud removal in image time series through unmixing. In: Proceedings of International Workshop on the Analysis of Multitemporal Remote Sensing Images, Annecy, 2015. 1--4.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cerra D, Muller R, Reinartz P. Cloud removal in image time series through unmixing. In: Proceedings of International Workshop on the Analysis of Multitemporal Remote Sensing Images, Annecy, 2015. 1--4&
[162]
Dombrowski M, Bajaj J, Willson P. Video-rate visible to LWIR hyperspectral imaging and image exploitation. In: Proceedings of IEEE Applied Imagery Pattern Recognition Workshop, Washington, 2002. 178--185.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dombrowski M, Bajaj J, Willson P. Video-rate visible to LWIR hyperspectral imaging and image exploitation. In: Proceedings of IEEE Applied Imagery Pattern Recognition Workshop, Washington, 2002. 178--185&
[163]
Arnold T, De Biasio M, Leitner R. Hyperspectral video endoscope for intra-surgery tissue classification using auto-fluorescence and reflectance spectroscopy. In: Proceedings of SPIE, European Conference on Biomedical Optics, Munich, 2011. 8087: 808711.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Arnold T, De Biasio M, Leitner R. Hyperspectral video endoscope for intra-surgery tissue classification using auto-fluorescence and reflectance spectroscopy. In: Proceedings of SPIE, European Conference on Biomedical Optics, Munich, 2011. 8087: 808711&
[164]
Banerjee A, Burlina P, Broadwater J. Hyperspectral video for illumination-invariant tracking. In: Proceedings of IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Grenoble, 2009. 1--4.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Banerjee A, Burlina P, Broadwater J. Hyperspectral video for illumination-invariant tracking. In: Proceedings of IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Grenoble, 2009. 1--4&
[165]
van Nguyen H, Banerjee A, Chellappa R. Tracking via object reflectance using a hyperspectral video camera. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, San Francisco, 2010. 44--51.
Google Scholar
http://scholar.google.com/scholar_lookup?title=van Nguyen H, Banerjee A, Chellappa R. Tracking via object reflectance using a hyperspectral video camera. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, San Francisco, 2010. 44--51&
[166]
Bodkin A, Sheinis A, Norton A, et al. Video-rate chemical identification and visualization with snapshot hyperspectral imaging. In: Proceedings of SPIE Defense, Security, and Sensing, Baltimore, 2012. 8374: 83740C.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bodkin A, Sheinis A, Norton A, et al. Video-rate chemical identification and visualization with snapshot hyperspectral imaging. In: Proceedings of SPIE Defense, Security, and Sensing, Baltimore, 2012. 8374: 83740C&
[167]
Merkurjev E, Sunu J, Bertozzi A L. Graph MBO method for multiclass segmentation of hyperspectral stand-off detection video. In: Proceedings of IEEE International Conference on Image Processing (ICIP), Paris, 2014. 689--693.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Merkurjev E, Sunu J, Bertozzi A L. Graph MBO method for multiclass segmentation of hyperspectral stand-off detection video. In: Proceedings of IEEE International Conference on Image Processing (ICIP), Paris, 2014. 689--693&
[168]
Hu H, Sunu J, Bertozzi A L. Multi-class graph Mumford-Shah model for plume detection using the MBO scheme. In: Proceedings of International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, Hongkong, 2015. 209--222.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hu H, Sunu J, Bertozzi A L. Multi-class graph Mumford-Shah model for plume detection using the MBO scheme. In: Proceedings of International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, Hongkong, 2015. 209--222&
[169]
Tochon G, Pauwels D, Mura M D, et al. Unmixing-based gas plume tracking in LWIR hyperspectral video sequences. In: Proceedings of IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Los Angeles, 2016. 1--5.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tochon G, Pauwels D, Mura M D, et al. Unmixing-based gas plume tracking in LWIR hyperspectral video sequences. In: Proceedings of IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Los Angeles, 2016. 1--5&
[170]
Xu Y, Wu Z, Wei Z, et al. GAS plume detection in hyperspectral video sequence using low rank representation. In: Proceedings of IEEE International Conference on Image Processing (ICIP), Phoenix, 2016. 2221--2225.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Xu Y, Wu Z, Wei Z, et al. GAS plume detection in hyperspectral video sequence using low rank representation. In: Proceedings of IEEE International Conference on Image Processing (ICIP), Phoenix, 2016. 2221--2225&
[171]
Xu
Y,
Wu
Z,
Chanussot
J.
Low-Rank Decomposition and Total Variation Regularization of Hyperspectral Video Sequences.
IEEE Trans Geosci Remote Sens,
2018, 56: 1680-1694
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Low-Rank Decomposition and Total Variation Regularization of Hyperspectral Video Sequences&author=Xu Y&author=Wu Z&author=Chanussot J&publication_year=2018&journal=IEEE Trans Geosci Remote Sens&volume=56&pages=1680-1694
[172]
Yu H, Wu Z, Wei J, et al. GPU parallel implementation of gas plume detection in hyperspectral video sequences. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, 2018. 2781--2784.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yu H, Wu Z, Wei J, et al. GPU parallel implementation of gas plume detection in hyperspectral video sequences. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, 2018. 2781--2784&
[173]
Tochon
G,
Chanussot
J,
Dalla Mura
M.
Object Tracking by Hierarchical Decomposition of Hyperspectral Video Sequences: Application to Chemical Gas Plume Tracking.
IEEE Trans Geosci Remote Sens,
2017, 55: 4567-4585
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Object Tracking by Hierarchical Decomposition of Hyperspectral Video Sequences: Application to Chemical Gas Plume Tracking&author=Tochon G&author=Chanussot J&author=Dalla Mura M&publication_year=2017&journal=IEEE Trans Geosci Remote Sens&volume=55&pages=4567-4585
[174]
Tan S, Liu H, Gu Y, et al. Sequential tensor decomposition for Gas tracking in Lwir hyperspectral video sequences. In: Proceedings of IEEE Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, 2019. 1--5.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tan S, Liu H, Gu Y, et al. Sequential tensor decomposition for Gas tracking in Lwir hyperspectral video sequences. In: Proceedings of IEEE Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, 2019. 1--5&
[175]
Dudley
J M,
Genty
G,
Coen
S.
Supercontinuum generation in photonic crystal fiber.
Rev Mod Phys,
2006, 78: 1135-1184
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Supercontinuum generation in photonic crystal fiber&author=Dudley J M&author=Genty G&author=Coen S&publication_year=2006&journal=Rev Mod Phys&volume=78&pages=1135-1184
[176]
Hakala
T,
Suomalainen
J,
Kaasalainen
S.
Full waveform hyperspectral LiDAR for terrestrial laser scanning.
Opt Express,
2012, 20: 7119-7127
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Full waveform hyperspectral LiDAR for terrestrial laser scanning&author=Hakala T&author=Suomalainen J&author=Kaasalainen S&publication_year=2012&journal=Opt Express&volume=20&pages=7119-7127
[177]
Hernandez-Marin
S,
Wallace
A M,
Gibson
G J.
Bayesian Analysis of Lidar Signals with Multiple Returns.
IEEE Trans Pattern Anal Mach Intell,
2007, 29: 2170-2180
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bayesian Analysis of Lidar Signals with Multiple Returns&author=Hernandez-Marin S&author=Wallace A M&author=Gibson G J&publication_year=2007&journal=IEEE Trans Pattern Anal Mach Intell&volume=29&pages=2170-2180
[178]
Suomalainen
J,
Hakala
T,
Kaartinen
H.
Demonstration of a virtual active hyperspectral LiDAR in automated point cloud classification.
ISPRS J Photogrammetry Remote Sens,
2011, 66: 637-641
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Demonstration of a virtual active hyperspectral LiDAR in automated point cloud classification&author=Suomalainen J&author=Hakala T&author=Kaartinen H&publication_year=2011&journal=ISPRS J Photogrammetry Remote Sens&volume=66&pages=637-641
[179]
Woodhouse
I H,
Nichol
C,
Sinclair
P.
A Multispectral Canopy LiDAR Demonstrator Project.
IEEE Geosci Remote Sens Lett,
2011, 8: 839-843
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Multispectral Canopy LiDAR Demonstrator Project&author=Woodhouse I H&author=Nichol C&author=Sinclair P&publication_year=2011&journal=IEEE Geosci Remote Sens Lett&volume=8&pages=839-843
[180]
Wallace A M, McCarthy A, Nichol C J, et al. Design and evaluation of multispectral lidar for the recovery of arboreal parameters. IEEE Trans Geosci Remote Sens, 2013, 52(8): 4942-4954.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wallace A M, McCarthy A, Nichol C J, et al. Design and evaluation of multispectral lidar for the recovery of arboreal parameters. IEEE Trans Geosci Remote Sens, 2013, 52(8): 4942-4954&
[181]
Wei G, Shalei S, Bo Z, et al. Multi-wavelength canopy LiDAR for remote sensing of vegetation: Design and system performance. ISPRS J Photogramm Remote Sens, 2012, 69: 1-9.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wei G, Shalei S, Bo Z, et al. Multi-wavelength canopy LiDAR for remote sensing of vegetation: Design and system performance. ISPRS J Photogramm Remote Sens, 2012, 69: 1-9&
[182]
Wichmann V, Bremer M, Lindenberger J, et al. Evaluating the potential of multispectral airborne lidar for topographic mapping and land cover classification. ISPRS Ann Photogramm Remot Sens Spatial Inf Sci, 2015, 2: 113-119.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wichmann V, Bremer M, Lindenberger J, et al. Evaluating the potential of multispectral airborne lidar for topographic mapping and land cover classification. ISPRS Ann Photogramm Remot Sens Spatial Inf Sci, 2015, 2: 113-119&
[183]
Shuo Shi
,
Shalei Song
,
Wei Gong
.
Improving Backscatter Intensity Calibration for Multispectral LiDAR.
IEEE Geosci Remote Sens Lett,
2015, 12: 1421-1425
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Improving Backscatter Intensity Calibration for Multispectral LiDAR&author=Shuo Shi &author=Shalei Song &author=Wei Gong &publication_year=2015&journal=IEEE Geosci Remote Sens Lett&volume=12&pages=1421-1425
[184]
Gu
Y F,
Jin
X D,
Xiang
R Z.
UAV-based integrated multispectral-LiDAR imaging system and data processing.
Sci China Technol Sci,
2020, 63: 1293-1301
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=UAV-based integrated multispectral-LiDAR imaging system and data processing&author=Gu Y F&author=Jin X D&author=Xiang R Z&publication_year=2020&journal=Sci China Technol Sci&volume=63&pages=1293-1301
[185]
Pedergnana M, Marpu P R, Mura M D, et al. Classification of remote sensing optical and LiDAR data using extended attribute profiles. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2012, 6(7): 856-865.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Pedergnana M, Marpu P R, Mura M D, et al. Classification of remote sensing optical and LiDAR data using extended attribute profiles. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2012, 6(7): 856-865&
[186]
Ghamisi
P,
Benediktsson
J A,
Phinn
S.
Land-cover classification using both hyperspectral and LiDAR data.
Int J Image Data Fusion,
2015, 6: 189-215
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Land-cover classification using both hyperspectral and LiDAR data&author=Ghamisi P&author=Benediktsson J A&author=Phinn S&publication_year=2015&journal=Int J Image Data Fusion&volume=6&pages=189-215
[187]
Pedergnana
M,
Marpu
P R,
Mura
M D.
A Novel Technique for Optimal Feature Selection in Attribute Profiles Based on Genetic Algorithms.
IEEE Trans Geosci Remote Sens,
2013, 51: 3514-3528
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Novel Technique for Optimal Feature Selection in Attribute Profiles Based on Genetic Algorithms&author=Pedergnana M&author=Marpu P R&author=Mura M D&publication_year=2013&journal=IEEE Trans Geosci Remote Sens&volume=51&pages=3514-3528
[188]
Ghamisi
P,
Hofle
B,
Zhu
X X.
Hyperspectral and LiDAR Data Fusion Using Extinction Profiles and Deep Convolutional Neural Network.
IEEE J Sel Top Appl Earth Observations Remote Sens,
2017, 10: 3011-3024
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hyperspectral and LiDAR Data Fusion Using Extinction Profiles and Deep Convolutional Neural Network&author=Ghamisi P&author=Hofle B&author=Zhu X X&publication_year=2017&journal=IEEE J Sel Top Appl Earth Observations Remote Sens&volume=10&pages=3011-3024
[189]
Rasti
B,
Ghamisi
P,
Gloaguen
R.
Hyperspectral and LiDAR Fusion Using Extinction Profiles and Total Variation Component Analysis.
IEEE Trans Geosci Remote Sens,
2017, 55: 3997-4007
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hyperspectral and LiDAR Fusion Using Extinction Profiles and Total Variation Component Analysis&author=Rasti B&author=Ghamisi P&author=Gloaguen R&publication_year=2017&journal=IEEE Trans Geosci Remote Sens&volume=55&pages=3997-4007
[190]
Rasti
B,
Ghamisi
P,
Plaza
J.
Fusion of Hyperspectral and LiDAR Data Using Sparse and Low-Rank Component Analysis.
IEEE Trans Geosci Remote Sens,
2017, 55: 6354-6365
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fusion of Hyperspectral and LiDAR Data Using Sparse and Low-Rank Component Analysis&author=Rasti B&author=Ghamisi P&author=Plaza J&publication_year=2017&journal=IEEE Trans Geosci Remote Sens&volume=55&pages=6354-6365
[191]
Khodadadzadeh
M,
Li
J,
Prasad
S.
Fusion of Hyperspectral and LiDAR Remote Sensing Data Using Multiple Feature Learning.
IEEE J Sel Top Appl Earth Observations Remote Sens,
2015, 8: 2971-2983
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fusion of Hyperspectral and LiDAR Remote Sensing Data Using Multiple Feature Learning&author=Khodadadzadeh M&author=Li J&author=Prasad S&publication_year=2015&journal=IEEE J Sel Top Appl Earth Observations Remote Sens&volume=8&pages=2971-2983
[192]
Wenzhi Liao
,
Pizurica
A,
Bellens
R.
Generalized Graph-Based Fusion of Hyperspectral and LiDAR Data Using Morphological Features.
IEEE Geosci Remote Sens Lett,
2015, 12: 552-556
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Generalized Graph-Based Fusion of Hyperspectral and LiDAR Data Using Morphological Features&author=Wenzhi Liao &author=Pizurica A&author=Bellens R&publication_year=2015&journal=IEEE Geosci Remote Sens Lett&volume=12&pages=552-556
[193]
Liao W, Xia J, Du P, et al. Semi-supervised graph fusion of hyperspectral and LiDAR data for classification. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, 2015. 53--56.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Liao W, Xia J, Du P, et al. Semi-supervised graph fusion of hyperspectral and LiDAR data for classification. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, 2015. 53--56&
[194]
Liao W, Huang X, van Coillie F, et al. Processing of multiresolution thermal hyperspectral and digital color data: outcome of the 2014 IEEE GRSS data fusion contest. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2015, 8(6): 2984-2996.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Liao W, Huang X, van Coillie F, et al. Processing of multiresolution thermal hyperspectral and digital color data: outcome of the 2014 IEEE GRSS data fusion contest. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2015, 8(6): 2984-2996&
[195]
Xia
J,
Liao
W,
Du
P.
Hyperspectral and LiDAR Classification With Semisupervised Graph Fusion.
IEEE Geosci Remote Sens Lett,
2020, 17: 666-670
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hyperspectral and LiDAR Classification With Semisupervised Graph Fusion&author=Xia J&author=Liao W&author=Du P&publication_year=2020&journal=IEEE Geosci Remote Sens Lett&volume=17&pages=666-670
[196]
Chen
Y,
Li
C,
Ghamisi
P.
Deep Fusion of Remote Sensing Data for Accurate Classification.
IEEE Geosci Remote Sens Lett,
2017, 14: 1253-1257
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Deep Fusion of Remote Sensing Data for Accurate Classification&author=Chen Y&author=Li C&author=Ghamisi P&publication_year=2017&journal=IEEE Geosci Remote Sens Lett&volume=14&pages=1253-1257
[197]
Li
H,
Ghamisi
P,
Soergel
U.
Hyperspectral and LiDAR Fusion Using Deep Three-Stream Convolutional Neural Networks.
Remote Sens,
2018, 10: 1649
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hyperspectral and LiDAR Fusion Using Deep Three-Stream Convolutional Neural Networks&author=Li H&author=Ghamisi P&author=Soergel U&publication_year=2018&journal=Remote Sens&volume=10&pages=1649
[198]
Zhang
M,
Li
W,
Du
Q.
Feature Extraction for Classification of Hyperspectral and LiDAR Data Using Patch-to-Patch CNN.
IEEE Trans Cybern,
2020, 50: 100-111
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Feature Extraction for Classification of Hyperspectral and LiDAR Data Using Patch-to-Patch CNN&author=Zhang M&author=Li W&author=Du Q&publication_year=2020&journal=IEEE Trans Cybern&volume=50&pages=100-111
[199]
Nen M, Alpayd E N. Multiple kernel learning algorithms. J Mach Learn Res, 2011, 12: 2211-2268.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nen M, Alpayd E N. Multiple kernel learning algorithms. J Mach Learn Res, 2011, 12: 2211-2268&
[200]
Zhang
M,
Ghamisi
P,
Li
W.
Classification of hyperspectral and LIDAR data using extinction profiles with feature fusion.
Remote Sens Lett,
2017, 8: 957-966
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Classification of hyperspectral and LIDAR data using extinction profiles with feature fusion&author=Zhang M&author=Ghamisi P&author=Li W&publication_year=2017&journal=Remote Sens Lett&volume=8&pages=957-966
[201]
Zhang
Y,
Yang
H L,
Prasad
S.
Ensemble Multiple Kernel Active Learning For Classification of Multisource Remote Sensing Data.
IEEE J Sel Top Appl Earth Observations Remote Sens,
2015, 8: 845-858
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ensemble Multiple Kernel Active Learning For Classification of Multisource Remote Sensing Data&author=Zhang Y&author=Yang H L&author=Prasad S&publication_year=2015&journal=IEEE J Sel Top Appl Earth Observations Remote Sens&volume=8&pages=845-858
[202]
Hartzell
P,
Glennie
C,
Biber
K.
Application of multispectral LiDAR to automated virtual outcrop geology.
ISPRS J Photogrammetry Remote Sens,
2014, 88: 147-155
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Application of multispectral LiDAR to automated virtual outcrop geology&author=Hartzell P&author=Glennie C&author=Biber K&publication_year=2014&journal=ISPRS J Photogrammetry Remote Sens&volume=88&pages=147-155
[203]
Zheng Niu
,
Zhigang Xu
,
Gang Sun
.
Design of a New Multispectral Waveform LiDAR Instrument to Monitor Vegetation.
IEEE Geosci Remote Sens Lett,
2015, 12: 1506-1510
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Design of a New Multispectral Waveform LiDAR Instrument to Monitor Vegetation&author=Zheng Niu &author=Zhigang Xu &author=Gang Sun &publication_year=2015&journal=IEEE Geosci Remote Sens Lett&volume=12&pages=1506-1510
[204]
Du L, Shi S, Gong W, et al. Wavelength selection of hyperspectral LiDAR based on feature weighting for estimation of leaf nitrogen content in rice. In: Proceedings of XXIII ISPRS Congress, Prague, 2016. XLI-B1:9-13.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Du L, Shi S, Gong W, et al. Wavelength selection of hyperspectral LiDAR based on feature weighting for estimation of leaf nitrogen content in rice. In: Proceedings of XXIII ISPRS Congress, Prague, 2016. XLI-B1:9-13&
[205]
Du
L,
Shi
S,
Yang
J.
Using Different Regression Methods to Estimate Leaf Nitrogen Content in Rice by Fusing Hyperspectral LiDAR Data and Laser-Induced Chlorophyll Fluorescence Data.
Remote Sens,
2016, 8: 526
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Using Different Regression Methods to Estimate Leaf Nitrogen Content in Rice by Fusing Hyperspectral LiDAR Data and Laser-Induced Chlorophyll Fluorescence Data&author=Du L&author=Shi S&author=Yang J&publication_year=2016&journal=Remote Sens&volume=8&pages=526
[206]
Du
L,
Gong
W,
Shi
S.
Estimation of rice leaf nitrogen contents based on hyperspectral LIDAR.
Int J Appl Earth Observation GeoInf,
2016, 44: 136-143
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Estimation of rice leaf nitrogen contents based on hyperspectral LIDAR&author=Du L&author=Gong W&author=Shi S&publication_year=2016&journal=Int J Appl Earth Observation GeoInf&volume=44&pages=136-143
[207]
Junttila
S,
Kaasalainen
S,
Vastaranta
M.
Investigating Bi-Temporal Hyperspectral Lidar Measurements from Declined Trees-Experiences from Laboratory Test.
Remote Sens,
2015, 7: 13863-13877
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Investigating Bi-Temporal Hyperspectral Lidar Measurements from Declined Trees-Experiences from Laboratory Test&author=Junttila S&author=Kaasalainen S&author=Vastaranta M&publication_year=2015&journal=Remote Sens&volume=7&pages=13863-13877
[208]
Nevalainen O, Hakala T, Suomalainen J, et al. Fast and nondestructive method for leaf level chlorophyll estimation using hyperspectral LiDAR. Agr Forest Meteorol, 2014, 198: 250-258.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nevalainen O, Hakala T, Suomalainen J, et al. Fast and nondestructive method for leaf level chlorophyll estimation using hyperspectral LiDAR. Agr Forest Meteorol, 2014, 198: 250-258&
[209]
Hakala
T,
Nevalainen
O,
Kaasalainen
S.
Technical Note: Multispectral lidar time series of pine canopy chlorophyll content.
Biogeosciences,
2015, 12: 1629-1634
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Technical Note: Multispectral lidar time series of pine canopy chlorophyll content&author=Hakala T&author=Nevalainen O&author=Kaasalainen S&publication_year=2015&journal=Biogeosciences&volume=12&pages=1629-1634
[210]
Chen
B,
Shi
S,
Gong
W.
Multispectral LiDAR Point Cloud Classification: A Two-Step Approach.
Remote Sens,
2017, 9: 373
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Multispectral LiDAR Point Cloud Classification: A Two-Step Approach&author=Chen B&author=Shi S&author=Gong W&publication_year=2017&journal=Remote Sens&volume=9&pages=373
[211]
Puttonen
E,
Hakala
T,
Nevalainen
O.
Artificial target detection with a hyperspectral LiDAR over 26-h measurement.
Opt Eng,
2015, 54: 013105
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Artificial target detection with a hyperspectral LiDAR over 26-h measurement&author=Puttonen E&author=Hakala T&author=Nevalainen O&publication_year=2015&journal=Opt Eng&volume=54&pages=013105
[212]
Matikainen
L,
Karila
K,
Hyypp?
J.
Object-based analysis of multispectral airborne laser scanner data for land cover classification and map updating.
ISPRS J Photogrammetry Remote Sens,
2017, 128: 298-313
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Object-based analysis of multispectral airborne laser scanner data for land cover classification and map updating&author=Matikainen L&author=Karila K&author=Hyypp? J&publication_year=2017&journal=ISPRS J Photogrammetry Remote Sens&volume=128&pages=298-313
[213]
Fernandez-Diaz
J,
Carter
W,
Glennie
C.
Capability Assessment and Performance Metrics for the Titan Multispectral Mapping Lidar.
Remote Sens,
2016, 8: 936
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Capability Assessment and Performance Metrics for the Titan Multispectral Mapping Lidar&author=Fernandez-Diaz J&author=Carter W&author=Glennie C&publication_year=2016&journal=Remote Sens&volume=8&pages=936
[214]
Bakula K, Kupidura P, Jelowicki L. Testing of land cover classification from multispectral airborne laser scanning data. In: Proceedings of XXIII ISPRS Congress, Prague, 2016. XLI-B7:161-169.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bakula K, Kupidura P, Jelowicki L. Testing of land cover classification from multispectral airborne laser scanning data. In: Proceedings of XXIII ISPRS Congress, Prague, 2016. XLI-B7:161-169&
[215]
Wang
C K,
Tseng
Y H,
Chu
H J.
Airborne Dual-Wavelength LiDAR Data for Classifying Land Cover.
Remote Sens,
2014, 6: 700-715
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Airborne Dual-Wavelength LiDAR Data for Classifying Land Cover&author=Wang C K&author=Tseng Y H&author=Chu H J&publication_year=2014&journal=Remote Sens&volume=6&pages=700-715
[216]
Zhang
J,
Yang
B,
Fu
F.
Resistivity and Its Anisotropy Characterization of 3D-Printed Acrylonitrile Butadiene Styrene Copolymer (ABS)/Carbon Black (CB) Composites.
Appl Sci,
2017, 7: 20
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Resistivity and Its Anisotropy Characterization of 3D-Printed Acrylonitrile Butadiene Styrene Copolymer (ABS)/Carbon Black (CB) Composites&author=Zhang J&author=Yang B&author=Fu F&publication_year=2017&journal=Appl Sci&volume=7&pages=20
[217]
Leigh
H W,
Magruder
L A.
Using dual-wavelength, full-waveform airborne lidar for surface classification and vegetation characterization.
J Appl Remote Sens,
2016, 10: 045001
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Using dual-wavelength, full-waveform airborne lidar for surface classification and vegetation characterization&author=Leigh H W&author=Magruder L A&publication_year=2016&journal=J Appl Remote Sens&volume=10&pages=045001
[218]
Zou X, Zhao G, Li J, et al. 3D land cover classification based on multispectral lidar point clouds. In: Proceedings of XXIII ISPRS Congress, Prague, 2016. 741--747.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zou X, Zhao G, Li J, et al. 3D land cover classification based on multispectral lidar point clouds. In: Proceedings of XXIII ISPRS Congress, Prague, 2016. 741--747&
[219]
Sun J, Shi S, Chen B, et al. Combined application of 3D spectral features from multispectral LiDAR for classification. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, 2017. 5264--5267.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sun J, Shi S, Chen B, et al. Combined application of 3D spectral features from multispectral LiDAR for classification. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, 2017. 5264--5267&
[220]
Ekhtari N, Glennie C, Fernandez-Diaz J C. Classification of multispectral lidar point clouds. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, 2017. 2756--2759.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ekhtari N, Glennie C, Fernandez-Diaz J C. Classification of multispectral lidar point clouds. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, 2017. 2756--2759&
[221]
Ekhtari N, Glennie C, Fernandez-Diaz J C, et al. Classification of Airborne Multispectral Lidar Point Clouds for Land Cover Mapping. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2018, 11(6): 2068-2078.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ekhtari N, Glennie C, Fernandez-Diaz J C, et al. Classification of Airborne Multispectral Lidar Point Clouds for Land Cover Mapping. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2018, 11(6): 2068-2078&
[222]
Miller C I, Thomas J J, Kim J P, et al. Application of image classification techniques to multispectral lidar point cloud data. In: Proceedings of SPIE Defense + Security, Baltimore, 2016. 9832: 98320X.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Miller C I, Thomas J J, Kim J P, et al. Application of image classification techniques to multispectral lidar point cloud data. In: Proceedings of SPIE Defense + Security, Baltimore, 2016. 9832: 98320X&
[223]
Multispectral LiDAR Data for Land Cover Classification of Urban Areas.
Sensors,
2017, 17: 958
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Multispectral LiDAR Data for Land Cover Classification of Urban Areas&publication_year=2017&journal=Sensors&volume=17&pages=958
[224]
Wang
Q,
Gu
Y.
A Discriminative Tensor Representation Model for Feature Extraction and Classification of Multispectral LiDAR Data.
IEEE Trans Geosci Remote Sens,
2020, 58: 1568-1586
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Discriminative Tensor Representation Model for Feature Extraction and Classification of Multispectral LiDAR Data&author=Wang Q&author=Gu Y&publication_year=2020&journal=IEEE Trans Geosci Remote Sens&volume=58&pages=1568-1586
[225]
Li
H,
Jiang
T,
Zhang
K.
Efficient and Robust Feature Extraction by Maximum Margin Criterion.
IEEE Trans Neural Netw,
2006, 17: 157-165
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Efficient and Robust Feature Extraction by Maximum Margin Criterion&author=Li H&author=Jiang T&author=Zhang K&publication_year=2006&journal=IEEE Trans Neural Netw&volume=17&pages=157-165
[226]
Liu Y, Gao G, Gu Y. Tensor matched subspace detector for hyperspectral target detection. IEEE Trans Geosci Remote Sens, 2016, 55(4): 1967-1974.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Liu Y, Gao G, Gu Y. Tensor matched subspace detector for hyperspectral target detection. IEEE Trans Geosci Remote Sens, 2016, 55(4): 1967-1974&
[227]
Veganzones
M A,
Cohen
J E,
Cabral Farias
R.
Nonnegative Tensor CP Decomposition of Hyperspectral Data.
IEEE Trans Geosci Remote Sens,
2016, 54: 2577-2588
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nonnegative Tensor CP Decomposition of Hyperspectral Data&author=Veganzones M A&author=Cohen J E&author=Cabral Farias R&publication_year=2016&journal=IEEE Trans Geosci Remote Sens&volume=54&pages=2577-2588