logo

SCIENCE CHINA Information Sciences, Volume 64 , Issue 2 : 121301(2021) https://doi.org/10.1007/s11432-020-3084-1

Multimodal hyperspectral remote sensing: an overview and perspective

More info
  • ReceivedMay 5, 2020
  • AcceptedOct 12, 2020
  • PublishedJan 21, 2021

Abstract


Acknowledgment

This work was supported by National Natural Science Foundation of Key International Cooperation of China (Grant No. 61720106002) and National Key RD Program of China (Grant No. 2017YFC1405100). The authors would like to thank Beijing Anzhou Technology Co. LTD for providing the HSV data shown in Figure 7.


References

[1] Green R O, Chrien T G, Enmark H T. First results from the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sens Environ, 1987, 44: 127--143. Google Scholar

[2] UAV hyperspectral and lidar data and their fusion for arid and semi-arid land vegetation monitoring. Remote Sens Ecol Conserv, 2018, 4: 20-33 CrossRef Google Scholar

[3] Govender M, Chetty K, Bulcock H. A review of hyperspectral remote sensing and its application in vegetation and water resource studies. Water Sa, 2007, 33: 145--152. Google Scholar

[4] Luo B, Yang C, Chanussot J, et al. Crop yield estimation based on unsupervised linear unmixing of multidate hyperspectral imagery. IEEE Trans Geosci Remote Sens, 2012, 51(1): 162-173. Google Scholar

[5] Morier T, Cambouris A N, Chokmani K. In-Season Nitrogen Status Assessment and Yield Estimation Using Hyperspectral Vegetation Indices in a Potato Crop. Agronomy J, 2015, 107: 1295-1309 CrossRef Google Scholar

[6] Moroni M, Lupo E, Marra E. Hyperspectral Image Analysis in Environmental Monitoring: Setup of a New Tunable Filter Platform. Procedia Environ Sci, 2013, 19: 885-894 CrossRef Google Scholar

[7] Honkavaara E, Hakala T, Markelin L, et al. Autonomous hyperspectral UAS photogrammetry for environmental monitoring applications. ISPRS Archives, 2014, XL-1: 155-159. Google Scholar

[8] Luft L, Neumann C, Freude M. Hyperspectral modeling of ecological indicators - A new approach for monitoring former military training areas. Ecol Indicators, 2014, 46: 264-285 CrossRef Google Scholar

[9] Mucher C A, Kooistra L, Vermeulen M, et al. Quantifying structure of Natura 2000 heathland habitats using spectral mixture analysis and segmentation techniques on hyperspectral imagery. Ecol Indic, 2013, 33: 71-81. Google Scholar

[10] Briottet X, Boucher Y, Dimmeler A, et al. Military applications of hyperspectral imagery. In: Proceedings of SPIE, Defense and Security Symposium, Orlando, 2006. 6239: 62390B. Google Scholar

[11] Kastek M, Piatkowski T, Dulski R, et al. Multispectral and hyperspectral measurements of soldier's camouflage equipment. In: Proceedings of SPIE Defense, Security, and Sensing, Baltimore, 2012. 8382: 83820K. Google Scholar

[12] Richards J A, Jia X. Remote Sensing Digital Image Analysis. Berlin: Springer, 1999. Google Scholar

[13] Tong Q, Xue Y, Zhang L. Progress in Hyperspectral Remote Sensing Science and Technology in China Over the Past Three Decades. IEEE J Sel Top Appl Earth Observations Remote Sens, 2014, 7: 70-91 CrossRef ADS Google Scholar

[14] Gerhart T, Sunu J, Lieu L, et al. Detection and tracking of gas plumes in LWIR hyperspectral video sequence data. In: Proceedings of SPIE Defense, Security, and Sensing, Baltimore, 2013. 8743: 87430J. Google Scholar

[15] Tochon G, Chanussot J, Gilles J, et al. Gas Plume Detection and Tracking in Hyperspectral Video Sequences using Binary Partition Trees. In: Proceedings of IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Lausanne, 2014. 1--4. Google Scholar

[16] Shaw G, Manolakis D. Signal processing for hyperspectral image exploitation. IEEE Signal Process Mag, 2002, 19(1): 12-16. Google Scholar

[17] Stein D W J, Beaven S G, Hoff L E. Anomaly detection from hyperspectral imagery. IEEE Signal Process Mag, 2002, 19: 58-69 CrossRef ADS Google Scholar

[18] Manolakis D, Shaw G. Detection algorithms for hyperspectral imaging applications. IEEE Signal Process Mag, 2002, 19: 29-43 CrossRef ADS Google Scholar

[19] Keshava N, Mustard J F. Spectral unmixing. IEEE Signal Process Mag, 2002, 19: 44-57 CrossRef ADS Google Scholar

[20] Landgrebe D. Hyperspectral image data analysis. IEEE Signal Process Mag, 2002, 19(1): 17-28. Google Scholar

[21] Camps-Valls G, Tuia D, Bruzzone L, et al. Advances in hyperspectral image classification. IEEE Signal Process Mag, 2014, 31(1): 45-54. Google Scholar

[22] Manolakis D, Truslow E, Pieper M, et al. Detection Algorithms in Hyperspectral Imaging Systems: An Overview of Practical Algorithms. IEEE Signal Process Mag, 2014, 31(1): 24-33. Google Scholar

[23] Nasrabadi N M. Hyperspectral Target Detection: An Overview of Current and Future Challenges. IEEE Signal Process Mag, 2014, 31(31): 34-44. Google Scholar

[24] Wei Li, Qian Du. A Survey on Representation-based Classification and Detection in Hyperspectral Remote Sensing Imagery. Pattern Recognit Lett, 2015, 83: 115-123. Google Scholar

[25] Arce G R, Brady D J, Carin L. Compressive Coded Aperture Spectral Imaging: An Introduction. IEEE Signal Process Mag, 2014, 31: 105-115 CrossRef ADS Google Scholar

[26] Willett, R, Duarte, M, Davenport, M, et al. Sparsity and Structure in Hyperspectral Imaging: Sensing, Reconstruction, and Target Detection. IEEE Signal Process Mag, 2014, 31(1): 116-126. Google Scholar

[27] Sami ul Haq Q, Tao L, Sun F. A Fast and Robust Sparse Approach for Hyperspectral Data Classification Using a Few Labeled Samples. IEEE Trans Geosci Remote Sens, 2012, 50: 2287-2302 CrossRef ADS Google Scholar

[28] Chen Y, Nasrabadi N M, Tran T D. Sparse Representation for Target Detection in Hyperspectral Imagery. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2011, 5(3): 629-640. Google Scholar

[29] Chen J, Jiao L. Hyperspectral imagery classification using local collaborative representation. Int J Remote Sens, 2015, 36: 734-748 CrossRef ADS Google Scholar

[30] Li W, Du Q. Collaborative Representation for Hyperspectral Anomaly Detection. IEEE Trans Geosci Remote Sens, 2015, 53: 1463-1474 CrossRef ADS Google Scholar

[31] Zhang H, Li J, Huang Y, et al. A Nonlocal Weighted Joint Sparse Representation Classification Method for Hyperspectral Imagery. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2014, 7(6): 2056-2065. Google Scholar

[32] Li J, Zhang H, Zhang L. Hyperspectral Anomaly Detection by the Use of Background Joint Sparse Representation. IEEE J Sel Top Appl Earth Observations Remote Sens, 2015, 8: 2523-2533 CrossRef ADS Google Scholar

[33] Chen Y, Nasrabadi N M, Tran T D. Simultaneous Joint Sparsity Model for Target Detection in Hyperspectral Imagery. IEEE Geosci Remote Sens Lett, 2011, 8: 676-680 CrossRef ADS Google Scholar

[34] Li W, Du Q. Joint Within-Class Collaborative Representation for Hyperspectral Image Classification. IEEE J Sel Top Appl Earth Observations Remote Sens, 2014, 7: 2200-2208 CrossRef ADS Google Scholar

[35] Li J, Zhang H, Huang Y. Hyperspectral Image Classification by Nonlocal Joint Collaborative Representation With a Locally Adaptive Dictionary. IEEE Trans Geosci Remote Sens, 2014, 52: 3707-3719 CrossRef ADS Google Scholar

[36] Chen Y, Nasrabadi N M, Tran T D. Hyperspectral Image Classification via Kernel Sparse Representation. IEEE Trans Geosci Remote Sens, 2013, 51: 217-231 CrossRef ADS Google Scholar

[37] Liu J, Wu Z, Wei Z. Spatial-Spectral Kernel Sparse Representation for Hyperspectral Image Classification. IEEE J Sel Top Appl Earth Observations Remote Sens, 2013, 6: 2462-2471 CrossRef ADS Google Scholar

[38] Li W, Du Q, Xiong M. Kernel Collaborative Representation With Tikhonov Regularization for Hyperspectral Image Classification. IEEE Geosci Remote Sens Lett, 2015, 12(1): 48-52. Google Scholar

[39] Li J, Zhang H, Zhang L. Column-generation kernel nonlocal joint collaborative representation for hyperspectral image classification. ISPRS J Photogrammetry Remote Sens, 2014, 94: 25-36 CrossRef Google Scholar

[40] Camps-Valls G, Bruzzone L. Kernel-Based Methods for Hyperspectral Image Classification. IEEE Trans Geosci Remote Sens, 2005, 43: 1351-1362 CrossRef ADS Google Scholar

[41] Mountrakis G, Im J, Ogole C. Support vector machines in remote sensing: A review. ISPRS J Photogrammetry Remote Sens, 2011, 66: 247-259 CrossRef ADS Google Scholar

[42] Niazmardi S, Demir B, Bruzzone L. Multiple Kernel Learning for Remote Sensing Image Classification. IEEE Trans Geosci Remote Sens, 2018, 56: 1425-1443 CrossRef ADS Google Scholar

[43] Gu Y, Chanussot J, Jia X. Multiple Kernel Learning for Hyperspectral Image Classification: A Review. IEEE Trans Geosci Remote Sens, 2017, 55: 6547-6565 CrossRef ADS Google Scholar

[44] Gu Y, Wang C, You D. Representative Multiple Kernel Learning for Classification in Hyperspectral Imagery. IEEE Trans Geosci Remote Sens, 2012, 50: 2852-2865 CrossRef ADS Google Scholar

[45] Yanfeng Gu , Qingwang Wang , Xiuping Jia . A Novel MKL Model of Integrating LiDAR Data and MSI for Urban Area Classification. IEEE Trans Geosci Remote Sens, 2015, 53: 5312-5326 CrossRef ADS Google Scholar

[46] Gu Y, Wang Q, Wang H, et al. Multiple kernel learning via low-rank nonnegative matrix factorization for classification of hyperspectral imagery. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2014, 8(6): 2739-2751. Google Scholar

[47] Wang Q, Gu Y, Tuia D. Discriminative Multiple Kernel Learning for Hyperspectral Image Classification. IEEE Trans Geosci Remote Sens, 2016, 54: 3912-3927 CrossRef ADS Google Scholar

[48] Liu T, Gu Y, Jia X. Class-Specific Sparse Multiple Kernel Learning for Spectral-Spatial Hyperspectral Image Classification. IEEE Trans Geosci Remote Sens, 2016, 54: 7351-7365 CrossRef ADS Google Scholar

[49] Rakotomamonjy A, Bach F, Stephane C, et al. SimpleMKL. J Mach Learn Res, 2008, 9(3): 2491-2521. Google Scholar

[50] Gu Y, Gao G, Zuo D. Model Selection and Classification With Multiple Kernel Learning for Hyperspectral Images via Sparsity. IEEE J Sel Top Appl Earth Observations Remote Sens, 2014, 7: 2119-2130 CrossRef ADS Google Scholar

[51] Gu Y, Wang Q, Xie B. Multiple kernel sparse representation for airborne LiDAR data classification. IEEE Trans Geosci Remote Sens, 2016, 55(2): 1085-1105. Google Scholar

[52] Gu Y, Liu H. Sample-Screening MKL Method via Boosting Strategy for Hyperspectral Image Classification. Neurocomputing, 2015, 173: 1630-1639. Google Scholar

[53] Wang Y, Gu Y, Gao G, et al. Hyperspectral image classification with multiple kernel Boosting algorithm. In: Proceedings of IEEE International Conference on Image Processing, Paris, 2015. 5047--5051. Google Scholar

[54] Gu Y, Liu T, Jia X. Nonlinear Multiple Kernel Learning With Multiple-Structure-Element Extended Morphological Profiles for Hyperspectral Image Classification. IEEE Trans Geosci Remote Sens, 2016, 54: 3235-3247 CrossRef ADS Google Scholar

[55] Lunga D, Prasad S, Crawford M M. Manifold-Learning-Based Feature Extraction for Classification of Hyperspectral Data: A Review of Advances in Manifold Learning. IEEE Signal Process Mag, 2014, 31: 55-66 CrossRef ADS Google Scholar

[56] Hong D, Yokoya N, Zhu X X. Learning a Robust Local Manifold Representation for Hyperspectral Dimensionality Reduction. IEEE J Sel Top Appl Earth Observations Remote Sens, 2017, 10: 2960-2975 CrossRef ADS Google Scholar

[57] Jun He , Lei Zhang , Qing Wang . Using Diffusion Geometric Coordinates for Hyperspectral Imagery Representation. IEEE Geosci Remote Sens Lett, 2009, 6: 767-771 CrossRef ADS Google Scholar

[58] Mohan A, Sapiro G, Bosch E. Spatially Coherent Nonlinear Dimensionality Reduction and Segmentation of Hyperspectral Images. IEEE Geosci Remote Sens Lett, 2007, 4: 206-210 CrossRef ADS Google Scholar

[59] Ma L, Zhang X, Yu X, et al. Spatial regularized local manifold learning for classification of hyperspectral images. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2015, 9(2): 609-624. Google Scholar

[60] Ma L, Crawford M M, Yang X, et al. Local-manifold-learning-based graph construction for semisupervised hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 2014, 53(5): 2832-2844. Google Scholar

[61] Ziemann A K, Messinger D W. An adaptive locally linear embedding manifold learning approach for hyperspectral target detection. In: Proceedings of SPIE Defense and Security, Baltimore, 2015. 9472: 94720O. Google Scholar

[62] Ziemann A K, Theiler J, Messinger D W. Hyperspectral target detection using manifold learning and multiple target spectra. In: Proceedings of IEEE Applied Imagery Pattern Recognition Workshop (AIPR), Washington, 2015. 1--7. Google Scholar

[63] Heylen R, Scheunders P. Calculation of Geodesic Distances in Nonlinear Mixing Models: Application to the Generalized Bilinear Model. IEEE Geosci Remote Sens Lett, 2012, 9: 644-648 CrossRef ADS Google Scholar

[64] Chi J, Crawford M. Selection of Landmark Points on Nonlinear Manifolds for Spectral Unmixing Using Local Homogeneity. GeoSci Remote Sens Lett IEEE, 2012, 10: 711-715 CrossRef ADS Google Scholar

[65] Chen Y, Lin Z, Zhao X, et al. Deep learning-based classification of hyperspectral data. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2014, 7(6): 2094-2107. Google Scholar

[66] Gao L, Gu D, Zhuang L. Combining t-Distributed Stochastic Neighbor Embedding With Convolutional Neural Networks for Hyperspectral Image Classification. IEEE Geosci Remote Sens Lett, 2020, 17: 1368-1372 CrossRef ADS Google Scholar

[67] Zhang L, Zhang L, Du B. Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art. IEEE Geosci Remote Sens Mag, 2016, 4: 22-40 CrossRef Google Scholar

[68] Audebert N, Le Saux B, Lefevre S. Deep Learning for Classification of Hyperspectral Data: A Comparative Review. IEEE Geosci Remote Sens Mag, 2019, 7: 159-173 CrossRef Google Scholar

[69] Rasti B, Hong D, Hang R, et al. Feature Extraction for Hyperspectral Imagery: The Evolution from Shallow to Deep. IEEE Geosci Remote Sens Mag,. arXiv Google Scholar

[70] Ghamisi P, Maggiori E, Li S T, et al. New Frontiers in Spectral-Spatial Hyperspectral Image Classification: The Latest Advances Based on Mathematical Morphology, Markov Random Fields, Segmentation, Sparse Representation, and Deep Learning. IEEE Geosci Remote Sens Mag, 2018, 6(3): 10-43. Google Scholar

[71] Xu F, Hu C, Li J. Special focus on deep learning in remote sensing image processing. Sci China Inf Sci, 2020, 63: 140300 CrossRef Google Scholar

[72] Li J, Li Y, He L. Spatio-temporal fusion for remote sensing data: an overview and new benchmark. Sci China Inf Sci, 2020, 63: 140301 CrossRef Google Scholar

[73] Li Y, Li J, He L. A new sensor bias-driven spatio-temporal fusion model based on convolutional neural networks. Sci China Inf Sci, 2020, 63: 140302 CrossRef Google Scholar

[74] Hou X, Ao W, Song Q. FUSAR-Ship: building a high-resolution SAR-AIS matchup dataset of Gaofen-3 for ship detection and recognition. Sci China Inf Sci, 2020, 63: 140303 CrossRef Google Scholar

[75] Cui K, Hu C, Wang R. Deep-learning-based extraction of the animal migration patterns from weather radar images. Sci China Inf Sci, 2020, 63: 140304 CrossRef Google Scholar

[76] He N, Fang L, Plaza A. Hybrid first and second order attention Unet for building segmentation in remote sensing images. Sci China Inf Sci, 2020, 63: 140305 CrossRef Google Scholar

[77] Liu X, Qiao Y, Xiong Y. Cascade conditional generative adversarial nets for spatial-spectral hyperspectral sample generation. Sci China Inf Sci, 2020, 63: 140306 CrossRef Google Scholar

[78] Gu Y, Liu H, Wang T. Deep feature extraction and motion representation for satellite video scene classification. Sci China Inf Sci, 2020, 63: 140307 CrossRef Google Scholar

[79] Lahat D, Adali T, Jutten C. Multimodal Data Fusion: An Overview of Methods, Challenges, and Prospects. Proc IEEE, 2015, 103: 1449-1477 CrossRef Google Scholar

[80] Dalla Mura M, Prasad S, Pacifici F. Challenges and Opportunities of Multimodality and Data Fusion in Remote Sensing. Proc IEEE, 2015, 103: 1585-1601 CrossRef Google Scholar

[81] Gomez-Chova L, Tuia D, Moser G. Multimodal Classification of Remote Sensing Images: A Review and Future Directions. Proc IEEE, 2015, 103: 1560-1584 CrossRef Google Scholar

[82] Camps-Valls G, Gomez-Chova L, Munoz-Mari J. Composite Kernels for Hyperspectral Image Classification. IEEE Geosci Remote Sens Lett, 2006, 3: 93-97 CrossRef ADS Google Scholar

[83] Tuia D, Ratle F, Pozdnoukhov A. Multisource Composite Kernels for Urban-Image Classification. IEEE Geosci Remote Sens Lett, 2010, 7: 88-92 CrossRef ADS Google Scholar

[84] Volpi M, Camps-Valls G, Tuia D. Spectral alignment of multi-temporal cross-sensor images with automated kernel canonical correlation analysis. ISPRS J Photogrammetry Remote Sens, 2015, 107: 50-63 CrossRef ADS Google Scholar

[85] Tuia D, Camps-Valls G, Matasci G. Learning Relevant Image Features With Multiple-Kernel Classification. IEEE Trans Geosci Remote Sens, 2010, 48: 3780-3791 CrossRef ADS Google Scholar

[86] Liu W, Qin R. A MultiKernel Domain Adaptation Method for Unsupervised Transfer Learning on Cross-Source and Cross-Region Remote Sensing Data Classification. IEEE Trans Geosci Remote Sens, 2020, 58: 4279-4289 CrossRef ADS Google Scholar

[87] Li S, Yin H, Fang L. Remote Sensing Image Fusion via Sparse Representations Over Learned Dictionaries. IEEE Trans Geosci Remote Sens, 2013, 51: 4779-4789 CrossRef ADS Google Scholar

[88] Cheng M, Wang C, Li J. Sparse Representation Based Pansharpening Using Trained Dictionary. IEEE Geosci Remote Sens Lett, 2014, 11: 293-297 CrossRef ADS Google Scholar

[89] Ghahremani M, Ghassemian H. Remote Sensing Image Fusion Using Ripplet Transform and Compressed Sensing. IEEE Geosci Remote Sens Lett, 2015, 12: 502-506 CrossRef ADS Google Scholar

[90] Zhao C, Gao X, Emery W J, et al. An Integrated Spatio-Spectral-Temporal Sparse Representation Method for Fusing Remote-Sensing Images With Different Resolutions. IEEE Trans Geosci Remote Sens, 2018, 56(6): 1-13. Google Scholar

[91] Vargas E, Arguello H, Tourneret J Y. Spectral Image Fusion From Compressive Measurements Using Spectral Unmixing and a Sparse Representation of Abundance Maps. IEEE Trans Geosci Remote Sens, 2019, 57: 5043-5053 CrossRef ADS Google Scholar

[92] Romero A, Gatta C, Camps-Valls G. Unsupervised Deep Feature Extraction for Remote Sensing Image Classification. IEEE Trans Geosci Remote Sens, 2015, 54(99):1-14. Google Scholar

[93] Tuia D, Flamary R, Courty N. Multiclass feature learning for hyperspectral image classification: Sparse and hierarchical solutions. ISPRS J Photogrammetry Remote Sens, 2015, 105: 272-285 CrossRef ADS arXiv Google Scholar

[94] Zhang H, Ni W, Yan W. Registration of Multimodal Remote Sensing Image Based on Deep Fully Convolutional Neural Network. IEEE J Sel Top Appl Earth Observations Remote Sens, 2019, 12: 3028-3042 CrossRef ADS Google Scholar

[95] Benedetti P, Ienco D, Gaetano R. $M^3\text{Fusion}$: A Deep Learning Architecture for Multiscale Multimodal Multitemporal Satellite Data Fusion. IEEE J Sel Top Appl Earth Observations Remote Sens, 2018, 11: 4939-4949 CrossRef ADS arXiv Google Scholar

[96] Tuia D, Volpi M, Trolliet M. Semisupervised Manifold Alignment of Multimodal Remote Sensing Images. IEEE Trans Geosci Remote Sens, 2014, 52: 7708-7720 CrossRef ADS Google Scholar

[97] Matasci G, Volpi M, Kanevski M. Semisupervised Transfer Component Analysis for Domain Adaptation in Remote Sensing Image Classification. IEEE Trans Geosci Remote Sens, 2015, 53: 3550-3564 CrossRef ADS Google Scholar

[98] Chi M, Sun Z, Qin Y, et al. A novel methodology to label urban remote sensing images based on location-based social media photos. Proc IEEE, 2017, 105(10): 1926-1936. Google Scholar

[99] Li J, Benediktsson J A, Zhang B. Spatial Technology and Social Media in Remote Sensing: A Survey. Proc IEEE, 2017, 105: 1855-1864 CrossRef Google Scholar

[100] Wang H, Skau E, Krim H. Fusing Heterogeneous Data: A Case for Remote Sensing and Social Media. IEEE Trans Geosci Remote Sens, 2018, 56: 6956-6968 CrossRef ADS Google Scholar

[101] Qi L, Li J, Wang Y. Urban Observation: Integration of Remote Sensing and Social Media Data. IEEE J Sel Top Appl Earth Observations Remote Sens, 2019, 12: 4252-4264 CrossRef ADS Google Scholar

[102] Singh A. Review Article Digital change detection techniques using remotely-sensed data. Int J Remote Sens, 1989, 10: 989-1003 CrossRef ADS Google Scholar

[103] Heo J, Fitzhugh T W. A standardized radiometric normalization method for change detection using remotely sensed imagery. Photogramm Eng Remote Sens, 2000, 66(2): 173-181. Google Scholar

[104] Schowengerdt R A. Remote Sensing: Models and Methods for Image Processing, 2nd ed. New York: Academic, 1997. Google Scholar

[105] Gonzalez R, Woods R. Digital Image Processing, 2nd ed. Englewood Cliffs: Prentice-Hall, 2002. Google Scholar

[106] Inamdar S, Bovolo F, Bruzzone L. Multidimensional Probability Density Function Matching for Preprocessing of Multitemporal Remote Sensing Images. IEEE Trans Geosci Remote Sens, 2008, 46: 1243-1252 CrossRef ADS Google Scholar

[107] Gorretta N, Hadoux X, Jay S. Multi-temporal hyperspectral data classification without explicit reflectance correction. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, 2015. 4228--4231. Google Scholar

[108] Hemissi S, Farah I R, Ettabaa K S, et al. A robust evidential fisher discriminant for multi-temporal hyperspectral images classification. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, 2012. 4275--4278. Google Scholar

[109] Jin H, Li P, Fan W. Land cover classification using multitemporal CHRIS/PROBA images and multitemporal texture. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Boston, 2008. 742--745. Google Scholar

[110] Prasad S, Bruce L M, Kalluri H. A robust multi-classifier decision fusion framework for hyperspectral, multi-temporal classification. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Boston, 2008, 273--276. Google Scholar

[111] Tuia D, Persello C, Bruzzone L. Domain Adaptation for the Classification of Remote Sensing Data: An Overview of Recent Advances. IEEE Geosci Remote Sens Mag, 2016, 4: 41-57 CrossRef Google Scholar

[112] Ye M, Qian Y, Zhou J. Dictionary Learning-Based Feature-Level Domain Adaptation for Cross-Scene Hyperspectral Image Classification. IEEE Trans Geosci Remote Sens, 2017, 55: 1544-1562 CrossRef ADS Google Scholar

[113] Kim W, Crawford M M. Adaptive classification for hyperspectral image data using manifold regularization kernel machines. IEEE Trans Geosci Remote Sens, 2010, 48(11): 4110-4121. Google Scholar

[114] Yang H L, Crawford M M. Spectral and Spatial Proximity-Based Manifold Alignment for Multitemporal Hyperspectral Image Classification. IEEE Trans Geosci Remote Sens, 2016, 54: 51-64 CrossRef ADS Google Scholar

[115] Yang H L, Crawford M M. Domain Adaptation With Preservation of Manifold Geometry for Hyperspectral Image Classification. IEEE J Sel Top Appl Earth Observations Remote Sens, 2016, 9: 543-555 CrossRef ADS Google Scholar

[116] Nielsen A A, Canty M J. Kernel principal component and maximum autocorrelation factor analyses for change detection. In: Proceedongs of SPIE Remote Sensing, Berlin, 2009. 7477: 74770T. Google Scholar

[117] Nielsen A A. The Regularized Iteratively Reweighted MAD Method for Change Detection in Multi- and Hyperspectral Data. IEEE Trans Image Process, 2007, 16: 463-478 CrossRef ADS Google Scholar

[118] Xia J, Yokoya N, Iwasaki A. Ensemble of transfer component analysis for domain adaptation in hyperspectral remote sensing image classification. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, 2017. 4762--4765. Google Scholar

[119] Samat A, Gamba P, Abuduwaili J. Geodesic Flow Kernel Support Vector Machine for Hyperspectral Image Classification by Unsupervised Subspace Feature Transfer. Remote Sens, 2016, 8: 234 CrossRef ADS Google Scholar

[120] Gao G, Gu Y. Tensorized principal component alignment: A unified framework for multimodal high-resolution images classification. IEEE Trans Geosci Remote Sens, 2018, 57(1): 46-61. Google Scholar

[121] Li T, Gu Y. Joint tensor subspace alignment on multi-angular remote sensing image. In: Proceedings of IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, 2018. 1--5. Google Scholar

[122] Qin Y, Bruzzone L, Li B. Tensor Alignment Based Domain Adaptation for Hyperspectral Image Classification. IEEE Trans Geosci Remote Sens, 2019, 57: 9290-9307 CrossRef ADS arXiv Google Scholar

[123] Persello C, Bruzzone L. Active Learning for Domain Adaptation in the Supervised Classification of Remote Sensing Images. IEEE Trans Geosci Remote Sens, 2012, 50: 4468-4483 CrossRef ADS Google Scholar

[124] Banerjee B, Bovolo F, Bhattacharya A. A Novel Graph-Matching-Based Approach for Domain Adaptation in Classification of Remote Sensing Image Pair. IEEE Trans Geosci Remote Sens, 2015, 53: 4045-4062 CrossRef ADS Google Scholar

[125] Tuia D, Munoz-Mari J, Gomez-Chova L. Graph Matching for Adaptation in Remote Sensing. IEEE Trans Geosci Remote Sens, 2013, 51: 329-341 CrossRef ADS Google Scholar

[126] Jacobs J P, Thoonen G, Tuia D, et al. Domain adaptation with hidden Markov random fields. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Melbourne, 2013. 3112--3115. Google Scholar

[127] Ettabaa K S, Hamdi M A, Salem R B. SVM for hyperspectral images classification based on 3D spectral signature. In: Proceedings of International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Sousse, 2014. 42--47. Google Scholar

[128] Hemissi S, Farah I R, Ettabaa K S, et al. Multi-Spectro-Temporal Analysis of Hyperspectral Imagery Based on 3-D Spectral Modeling and Multilinear Algebra. IEEE Trans Geosci Remote Sens, 2012, 51(1): 199-216. Google Scholar

[129] Teke M, Yardimci Y. Classification of crops using multitemporal hyperion images. In: Proceedings of IEEE International Conference on Agro-Geoinformatics, Istanbul, 2015. 282--287. Google Scholar

[130] Othman E, Bazi Y, Alajlan N, et al. Three-layer convex network for domain adaptation in multitemporal VHR images. IEEE Geosci Remote Sens Lett, 2016, 13(3): 354-358. Google Scholar

[131] Elshamli A, Taylor G W, Berg A, et al. Domain Adaptation Using Representation Learning for the Classification of Remote Sensing Images. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2017, 99: 1-12. Google Scholar

[132] Yang J, Zhao Y Q, Chan J C W. Learning and Transferring Deep Joint Spectral-Spatial Features for Hyperspectral Classification. IEEE Trans Geosci Remote Sens, 2017, 55: 4729-4742 CrossRef ADS Google Scholar

[133] Hong D, Yokoya N, Ge N. Learnable manifold alignment (LeMA): A semi-supervised cross-modality learning framework for land cover and land use classification. ISPRS J Photogrammetry Remote Sens, 2019, 147: 193-205 CrossRef ADS arXiv Google Scholar

[134] Kernel Manifold Alignment for Domain Adaptation. PLoS ONE, 2016, 11: e0148655 CrossRef ADS Google Scholar

[135] Li X, Zhang L, Du B. On Gleaning Knowledge From Cross Domains by Sparse Subspace Correlation Analysis for Hyperspectral Image Classification. IEEE Trans Geosci Remote Sens, 2019, 57: 3204-3220 CrossRef ADS Google Scholar

[136] Qin Y, Bruzzone L, Li B. Cross-Domain Collaborative Learning via Cluster Canonical Correlation Analysis and Random Walker for Hyperspectral Image Classification. IEEE Trans Geosci Remote Sens, 2019, 57: 3952-3966 CrossRef ADS arXiv Google Scholar

[137] Hong D, Yokoya N, Chanussot J. CoSpace: Common Subspace Learning From Hyperspectral-Multispectral Correspondences. IEEE Trans Geosci Remote Sens, 2019, 57: 4349-4359 CrossRef ADS arXiv Google Scholar

[138] Liu T, Zhang X, Gu Y. Unsupervised Cross-Temporal Classification of Hyperspectral Images With Multiple Geodesic Flow Kernel Learning. IEEE Trans Geosci Remote Sens, 2019, 57: 9688-9701 CrossRef ADS Google Scholar

[139] Gong B, Shi Y, Sha F, et al. Geodesic flow kernel for unsupervised domain adaptation. In: Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, 2012. 2066--2073. Google Scholar

[140] Liu S, Bruzzone L, Bovolo F. Sequential Spectral Change Vector Analysis for Iteratively Discovering and Detecting Multiple Changes in Hyperspectral Images. IEEE Trans Geosci Remote Sens, 2015, 53: 4363-4378 CrossRef ADS Google Scholar

[141] Liu S, Bruzzone L, Bovolo F. Unsupervised Multitemporal Spectral Unmixing for Detecting Multiple Changes in Hyperspectral Images. IEEE Trans Geosci Remote Sens, 2016, 54: 2733-2748 CrossRef ADS Google Scholar

[142] Cesmeci D, Karaca A C, Erturk A, et al. Hyperspectral change detection by multi-band census transform. In: Proceedings of IEEE Geoscience and Remote Sensing Symposium (IGARSS), Quebec, 2014. 2969--2972. Google Scholar

[143] Wu C, Zhang L, Du B. Hyperspectral anomaly change detection with slow feature analysis. Neurocomputing, 2015, 151: 175-187 CrossRef Google Scholar

[144] Du B, Ru L, Wu C. Unsupervised Deep Slow Feature Analysis for Change Detection in Multi-Temporal Remote Sensing Images. IEEE Trans Geosci Remote Sens, 2019, 57: 9976-9992 CrossRef ADS arXiv Google Scholar

[145] Yuan Y, Lv H, Lu X. Semi-supervised change detection method for multi-temporal hyperspectral images. Neurocomputing, 2015, 148: 363-375 CrossRef Google Scholar

[146] Wu C, Zhang L, Du B. Targeted change detection for stacked multi-temporal hyperspectral image. In: Proceedings of IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Shanghai, 2012. 1--4. Google Scholar

[147] Hazel G G. Object-level change detection in spectral imagery. IEEE Trans Geosci Remote Sens, 2001, 39: 553-561 CrossRef ADS Google Scholar

[148] Messinger D W, Richardson M, Casey J. Analysis of a multitemporal hyperspectral dataset over a common target scene. In: Proceedings of SPIE, Defense and Security Symposium, Orlando, 2006. 6233: 62331I. Google Scholar

[149] Sun Y, Zhang X, Shuai T, et al. Radiometric normalization of multitemporal hyperspectral satellite images. In: Proceedings of IEEE Geoscience and Remote Sensing Symposium (IGARSS), Quebec, 2014. 4204--4207. Google Scholar

[150] Halimi A, Dobigeon N, Toumeret J Y, et al. Unmixing multitemporal hyperspectral images accounting for endmember variability. In: Proceedings of IEEE European Signal Processing Conference (EUSIPCO), Nice, 2015. 1656--1660. Google Scholar

[151] Thouvenin P A, Dobigeon N, Tourneret J Y. A hierarchical Bayesian model accounting for endmember variability and abrupt spectral changes to unmix multitemporal hyperspectral images. IEEE Transactions on Computational Imaging, 2017, 4(1): 32-45. Google Scholar

[152] Thouvenin P A, Dobigeon N, Tourneret J Y. Unmixing multitemporal hyperspectral images with variability: an online algorithm. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, 2016. 3351--3355. Google Scholar

[153] Thouvenin P A, Dobigeon N, Tourneret J Y. Online Unmixing of Multitemporal Hyperspectral Images Accounting for Spectral Variability. IEEE Trans Image Process, 2016, 25: 3979-3990 CrossRef ADS arXiv Google Scholar

[154] Henrot S, Chanussot J, Jutten C. Dynamical Spectral Unmixing of Multitemporal Hyperspectral Images. IEEE Trans Image Process, 2016, 25: 3219-3232 CrossRef ADS arXiv Google Scholar

[155] Licciardi G A, Del Frate F. Pixel Unmixing in Hyperspectral Data by Means of Neural Networks. IEEE Trans Geosci Remote Sens, 2011, 49: 4163-4172 CrossRef ADS Google Scholar

[156] Erturk A, Plaza A. Informative Change Detection by Unmixing for Hyperspectral Images. IEEE Geosci Remote Sens Lett, 2015, 12: 1252-1256 CrossRef ADS Google Scholar

[157] Liu S, Bruzzone L, Bovolo F, et al. Multitemporal spectral unmixing for change detection in hyperspectral images. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, 2015. 4165--4168. Google Scholar

[158] Erturk A, Iordache M D, Plaza A. Sparse unmixing-based change detection for multitemporal hyperspectral images. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2015, 9(2): 708-719. Google Scholar

[159] Erturk A, Iordache M D, Plaza A. Sparse unmixing with dictionary pruning for hyperspectral change detection. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2016, 10(1): 321-330. Google Scholar

[160] Torres-Madronero M C, Velez-Reyes M, van Bloem S J, et al. Multi-temporal unmixing analysis of Hyperion images over the Guanica Dry Forest. In: Proceedings of IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Lisbon, 2011. 1--4. Google Scholar

[161] Cerra D, Muller R, Reinartz P. Cloud removal in image time series through unmixing. In: Proceedings of International Workshop on the Analysis of Multitemporal Remote Sensing Images, Annecy, 2015. 1--4. Google Scholar

[162] Dombrowski M, Bajaj J, Willson P. Video-rate visible to LWIR hyperspectral imaging and image exploitation. In: Proceedings of IEEE Applied Imagery Pattern Recognition Workshop, Washington, 2002. 178--185. Google Scholar

[163] Arnold T, De Biasio M, Leitner R. Hyperspectral video endoscope for intra-surgery tissue classification using auto-fluorescence and reflectance spectroscopy. In: Proceedings of SPIE, European Conference on Biomedical Optics, Munich, 2011. 8087: 808711. Google Scholar

[164] Banerjee A, Burlina P, Broadwater J. Hyperspectral video for illumination-invariant tracking. In: Proceedings of IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Grenoble, 2009. 1--4. Google Scholar

[165] van Nguyen H, Banerjee A, Chellappa R. Tracking via object reflectance using a hyperspectral video camera. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, San Francisco, 2010. 44--51. Google Scholar

[166] Bodkin A, Sheinis A, Norton A, et al. Video-rate chemical identification and visualization with snapshot hyperspectral imaging. In: Proceedings of SPIE Defense, Security, and Sensing, Baltimore, 2012. 8374: 83740C. Google Scholar

[167] Merkurjev E, Sunu J, Bertozzi A L. Graph MBO method for multiclass segmentation of hyperspectral stand-off detection video. In: Proceedings of IEEE International Conference on Image Processing (ICIP), Paris, 2014. 689--693. Google Scholar

[168] Hu H, Sunu J, Bertozzi A L. Multi-class graph Mumford-Shah model for plume detection using the MBO scheme. In: Proceedings of International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, Hongkong, 2015. 209--222. Google Scholar

[169] Tochon G, Pauwels D, Mura M D, et al. Unmixing-based gas plume tracking in LWIR hyperspectral video sequences. In: Proceedings of IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Los Angeles, 2016. 1--5. Google Scholar

[170] Xu Y, Wu Z, Wei Z, et al. GAS plume detection in hyperspectral video sequence using low rank representation. In: Proceedings of IEEE International Conference on Image Processing (ICIP), Phoenix, 2016. 2221--2225. Google Scholar

[171] Xu Y, Wu Z, Chanussot J. Low-Rank Decomposition and Total Variation Regularization of Hyperspectral Video Sequences. IEEE Trans Geosci Remote Sens, 2018, 56: 1680-1694 CrossRef ADS Google Scholar

[172] Yu H, Wu Z, Wei J, et al. GPU parallel implementation of gas plume detection in hyperspectral video sequences. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, 2018. 2781--2784. Google Scholar

[173] Tochon G, Chanussot J, Dalla Mura M. Object Tracking by Hierarchical Decomposition of Hyperspectral Video Sequences: Application to Chemical Gas Plume Tracking. IEEE Trans Geosci Remote Sens, 2017, 55: 4567-4585 CrossRef ADS Google Scholar

[174] Tan S, Liu H, Gu Y, et al. Sequential tensor decomposition for Gas tracking in Lwir hyperspectral video sequences. In: Proceedings of IEEE Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, 2019. 1--5. Google Scholar

[175] Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber. Rev Mod Phys, 2006, 78: 1135-1184 CrossRef ADS Google Scholar

[176] Hakala T, Suomalainen J, Kaasalainen S. Full waveform hyperspectral LiDAR for terrestrial laser scanning. Opt Express, 2012, 20: 7119-7127 CrossRef ADS Google Scholar

[177] Hernandez-Marin S, Wallace A M, Gibson G J. Bayesian Analysis of Lidar Signals with Multiple Returns. IEEE Trans Pattern Anal Mach Intell, 2007, 29: 2170-2180 CrossRef Google Scholar

[178] Suomalainen J, Hakala T, Kaartinen H. Demonstration of a virtual active hyperspectral LiDAR in automated point cloud classification. ISPRS J Photogrammetry Remote Sens, 2011, 66: 637-641 CrossRef ADS Google Scholar

[179] Woodhouse I H, Nichol C, Sinclair P. A Multispectral Canopy LiDAR Demonstrator Project. IEEE Geosci Remote Sens Lett, 2011, 8: 839-843 CrossRef ADS Google Scholar

[180] Wallace A M, McCarthy A, Nichol C J, et al. Design and evaluation of multispectral lidar for the recovery of arboreal parameters. IEEE Trans Geosci Remote Sens, 2013, 52(8): 4942-4954. Google Scholar

[181] Wei G, Shalei S, Bo Z, et al. Multi-wavelength canopy LiDAR for remote sensing of vegetation: Design and system performance. ISPRS J Photogramm Remote Sens, 2012, 69: 1-9. Google Scholar

[182] Wichmann V, Bremer M, Lindenberger J, et al. Evaluating the potential of multispectral airborne lidar for topographic mapping and land cover classification. ISPRS Ann Photogramm Remot Sens Spatial Inf Sci, 2015, 2: 113-119. Google Scholar

[183] Shuo Shi , Shalei Song , Wei Gong . Improving Backscatter Intensity Calibration for Multispectral LiDAR. IEEE Geosci Remote Sens Lett, 2015, 12: 1421-1425 CrossRef ADS Google Scholar

[184] Gu Y F, Jin X D, Xiang R Z. UAV-based integrated multispectral-LiDAR imaging system and data processing. Sci China Technol Sci, 2020, 63: 1293-1301 CrossRef ADS Google Scholar

[185] Pedergnana M, Marpu P R, Mura M D, et al. Classification of remote sensing optical and LiDAR data using extended attribute profiles. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2012, 6(7): 856-865. Google Scholar

[186] Ghamisi P, Benediktsson J A, Phinn S. Land-cover classification using both hyperspectral and LiDAR data. Int J Image Data Fusion, 2015, 6: 189-215 CrossRef ADS Google Scholar

[187] Pedergnana M, Marpu P R, Mura M D. A Novel Technique for Optimal Feature Selection in Attribute Profiles Based on Genetic Algorithms. IEEE Trans Geosci Remote Sens, 2013, 51: 3514-3528 CrossRef ADS Google Scholar

[188] Ghamisi P, Hofle B, Zhu X X. Hyperspectral and LiDAR Data Fusion Using Extinction Profiles and Deep Convolutional Neural Network. IEEE J Sel Top Appl Earth Observations Remote Sens, 2017, 10: 3011-3024 CrossRef ADS Google Scholar

[189] Rasti B, Ghamisi P, Gloaguen R. Hyperspectral and LiDAR Fusion Using Extinction Profiles and Total Variation Component Analysis. IEEE Trans Geosci Remote Sens, 2017, 55: 3997-4007 CrossRef ADS Google Scholar

[190] Rasti B, Ghamisi P, Plaza J. Fusion of Hyperspectral and LiDAR Data Using Sparse and Low-Rank Component Analysis. IEEE Trans Geosci Remote Sens, 2017, 55: 6354-6365 CrossRef ADS Google Scholar

[191] Khodadadzadeh M, Li J, Prasad S. Fusion of Hyperspectral and LiDAR Remote Sensing Data Using Multiple Feature Learning. IEEE J Sel Top Appl Earth Observations Remote Sens, 2015, 8: 2971-2983 CrossRef ADS Google Scholar

[192] Wenzhi Liao , Pizurica A, Bellens R. Generalized Graph-Based Fusion of Hyperspectral and LiDAR Data Using Morphological Features. IEEE Geosci Remote Sens Lett, 2015, 12: 552-556 CrossRef ADS Google Scholar

[193] Liao W, Xia J, Du P, et al. Semi-supervised graph fusion of hyperspectral and LiDAR data for classification. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, 2015. 53--56. Google Scholar

[194] Liao W, Huang X, van Coillie F, et al. Processing of multiresolution thermal hyperspectral and digital color data: outcome of the 2014 IEEE GRSS data fusion contest. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2015, 8(6): 2984-2996. Google Scholar

[195] Xia J, Liao W, Du P. Hyperspectral and LiDAR Classification With Semisupervised Graph Fusion. IEEE Geosci Remote Sens Lett, 2020, 17: 666-670 CrossRef ADS Google Scholar

[196] Chen Y, Li C, Ghamisi P. Deep Fusion of Remote Sensing Data for Accurate Classification. IEEE Geosci Remote Sens Lett, 2017, 14: 1253-1257 CrossRef ADS Google Scholar

[197] Li H, Ghamisi P, Soergel U. Hyperspectral and LiDAR Fusion Using Deep Three-Stream Convolutional Neural Networks. Remote Sens, 2018, 10: 1649 CrossRef ADS Google Scholar

[198] Zhang M, Li W, Du Q. Feature Extraction for Classification of Hyperspectral and LiDAR Data Using Patch-to-Patch CNN. IEEE Trans Cybern, 2020, 50: 100-111 CrossRef Google Scholar

[199] Nen M, Alpayd E N. Multiple kernel learning algorithms. J Mach Learn Res, 2011, 12: 2211-2268. Google Scholar

[200] Zhang M, Ghamisi P, Li W. Classification of hyperspectral and LIDAR data using extinction profiles with feature fusion. Remote Sens Lett, 2017, 8: 957-966 CrossRef Google Scholar

[201] Zhang Y, Yang H L, Prasad S. Ensemble Multiple Kernel Active Learning For Classification of Multisource Remote Sensing Data. IEEE J Sel Top Appl Earth Observations Remote Sens, 2015, 8: 845-858 CrossRef ADS Google Scholar

[202] Hartzell P, Glennie C, Biber K. Application of multispectral LiDAR to automated virtual outcrop geology. ISPRS J Photogrammetry Remote Sens, 2014, 88: 147-155 CrossRef ADS Google Scholar

[203] Zheng Niu , Zhigang Xu , Gang Sun . Design of a New Multispectral Waveform LiDAR Instrument to Monitor Vegetation. IEEE Geosci Remote Sens Lett, 2015, 12: 1506-1510 CrossRef ADS Google Scholar

[204] Du L, Shi S, Gong W, et al. Wavelength selection of hyperspectral LiDAR based on feature weighting for estimation of leaf nitrogen content in rice. In: Proceedings of XXIII ISPRS Congress, Prague, 2016. XLI-B1:9-13. Google Scholar

[205] Du L, Shi S, Yang J. Using Different Regression Methods to Estimate Leaf Nitrogen Content in Rice by Fusing Hyperspectral LiDAR Data and Laser-Induced Chlorophyll Fluorescence Data. Remote Sens, 2016, 8: 526 CrossRef ADS Google Scholar

[206] Du L, Gong W, Shi S. Estimation of rice leaf nitrogen contents based on hyperspectral LIDAR. Int J Appl Earth Observation GeoInf, 2016, 44: 136-143 CrossRef ADS Google Scholar

[207] Junttila S, Kaasalainen S, Vastaranta M. Investigating Bi-Temporal Hyperspectral Lidar Measurements from Declined Trees-Experiences from Laboratory Test. Remote Sens, 2015, 7: 13863-13877 CrossRef ADS Google Scholar

[208] Nevalainen O, Hakala T, Suomalainen J, et al. Fast and nondestructive method for leaf level chlorophyll estimation using hyperspectral LiDAR. Agr Forest Meteorol, 2014, 198: 250-258. Google Scholar

[209] Hakala T, Nevalainen O, Kaasalainen S. Technical Note: Multispectral lidar time series of pine canopy chlorophyll content. Biogeosciences, 2015, 12: 1629-1634 CrossRef ADS Google Scholar

[210] Chen B, Shi S, Gong W. Multispectral LiDAR Point Cloud Classification: A Two-Step Approach. Remote Sens, 2017, 9: 373 CrossRef ADS Google Scholar

[211] Puttonen E, Hakala T, Nevalainen O. Artificial target detection with a hyperspectral LiDAR over 26-h measurement. Opt Eng, 2015, 54: 013105 CrossRef ADS Google Scholar

[212] Matikainen L, Karila K, Hyypp? J. Object-based analysis of multispectral airborne laser scanner data for land cover classification and map updating. ISPRS J Photogrammetry Remote Sens, 2017, 128: 298-313 CrossRef ADS Google Scholar

[213] Fernandez-Diaz J, Carter W, Glennie C. Capability Assessment and Performance Metrics for the Titan Multispectral Mapping Lidar. Remote Sens, 2016, 8: 936 CrossRef ADS Google Scholar

[214] Bakula K, Kupidura P, Jelowicki L. Testing of land cover classification from multispectral airborne laser scanning data. In: Proceedings of XXIII ISPRS Congress, Prague, 2016. XLI-B7:161-169. Google Scholar

[215] Wang C K, Tseng Y H, Chu H J. Airborne Dual-Wavelength LiDAR Data for Classifying Land Cover. Remote Sens, 2014, 6: 700-715 CrossRef ADS Google Scholar

[216] Zhang J, Yang B, Fu F. Resistivity and Its Anisotropy Characterization of 3D-Printed Acrylonitrile Butadiene Styrene Copolymer (ABS)/Carbon Black (CB) Composites. Appl Sci, 2017, 7: 20 CrossRef Google Scholar

[217] Leigh H W, Magruder L A. Using dual-wavelength, full-waveform airborne lidar for surface classification and vegetation characterization. J Appl Remote Sens, 2016, 10: 045001 CrossRef ADS Google Scholar

[218] Zou X, Zhao G, Li J, et al. 3D land cover classification based on multispectral lidar point clouds. In: Proceedings of XXIII ISPRS Congress, Prague, 2016. 741--747. Google Scholar

[219] Sun J, Shi S, Chen B, et al. Combined application of 3D spectral features from multispectral LiDAR for classification. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, 2017. 5264--5267. Google Scholar

[220] Ekhtari N, Glennie C, Fernandez-Diaz J C. Classification of multispectral lidar point clouds. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, 2017. 2756--2759. Google Scholar

[221] Ekhtari N, Glennie C, Fernandez-Diaz J C, et al. Classification of Airborne Multispectral Lidar Point Clouds for Land Cover Mapping. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2018, 11(6): 2068-2078. Google Scholar

[222] Miller C I, Thomas J J, Kim J P, et al. Application of image classification techniques to multispectral lidar point cloud data. In: Proceedings of SPIE Defense + Security, Baltimore, 2016. 9832: 98320X. Google Scholar

[223] Multispectral LiDAR Data for Land Cover Classification of Urban Areas. Sensors, 2017, 17: 958 CrossRef Google Scholar

[224] Wang Q, Gu Y. A Discriminative Tensor Representation Model for Feature Extraction and Classification of Multispectral LiDAR Data. IEEE Trans Geosci Remote Sens, 2020, 58: 1568-1586 CrossRef ADS Google Scholar

[225] Li H, Jiang T, Zhang K. Efficient and Robust Feature Extraction by Maximum Margin Criterion. IEEE Trans Neural Netw, 2006, 17: 157-165 CrossRef Google Scholar

[226] Liu Y, Gao G, Gu Y. Tensor matched subspace detector for hyperspectral target detection. IEEE Trans Geosci Remote Sens, 2016, 55(4): 1967-1974. Google Scholar

[227] Veganzones M A, Cohen J E, Cabral Farias R. Nonnegative Tensor CP Decomposition of Hyperspectral Data. IEEE Trans Geosci Remote Sens, 2016, 54: 2577-2588 CrossRef ADS Google Scholar