This work was supported in part by National Natural Science Foundation of China (Grant No. 61631004).
[1] Lu C, Saifullah A, Li B. Real-Time Wireless Sensor-Actuator Networks for Industrial Cyber-Physical Systems. Proc IEEE, 2016, 104: 1013-1024 CrossRef Google Scholar
[2] Sato K, Kawamoto Y, Nishiyama H, Kato N, Shimizu Y. A modeling technique utilizing feedback control theory for performance evaluation of IoT system in real-time. In: Proceedings of International Conference on Wireless Communications & Signal Processing (WCSP), 2015. 1--5. Google Scholar
[3] Hoesler T, Simsek M, Fettweis G P. Mission Reliability for URLLC in Wireless Networks. IEEE Commun Lett, 2018, 22: 2350-2353 CrossRef Google Scholar
[4] Singh B, Tirkkonen O, Li Z. Contention-Based Access for Ultra-Reliable Low Latency Uplink Transmissions. IEEE Wireless Commun Lett, 2018, 7: 182-185 CrossRef Google Scholar
[5] Nielsen J J, Liu R, Popovski P. Ultra-Reliable Low Latency Communication Using Interface Diversity. IEEE Trans Commun, 2018, 66: 1322-1334 CrossRef Google Scholar
[6] She C, Yang C, Quek T Q S. Radio Resource Management for Ultra-Reliable and Low-Latency Communications. IEEE Commun Mag, 2017, 55: 72-78 CrossRef Google Scholar
[7] She C, Yang C, Quek T Q S. Cross-Layer Optimization for Ultra-Reliable and Low-Latency Radio Access Networks. IEEE Trans Wireless Commun, 2018, 17: 127-141 CrossRef Google Scholar
[8] Geng H, Alto P. Internet of Things and Data Analytics Handbook. Piscataway: Wiley Press, 2016. Google Scholar
[9] TR 22804. Study on Communication for Automation in Vertical Domains. 2018. Google Scholar
[10] Chang B, Zhang L, Li L. Optimizing Resource Allocation in URLLC for Real-Time Wireless Control Systems. IEEE Trans Veh Technol, 2019, 68: 8916-8927 CrossRef Google Scholar
[11] Chang B, Zhao G, Chen Z. Packet-Drop Design in URLLC for Real-Time Wireless Control Systems. IEEE Access, 2019, 7: 183081 CrossRef Google Scholar
[12] Chang B, Zhao G, Zhang L. Dynamic Communication QoS Design for Real-Time Wireless Control Systems. IEEE Sens J, 2020, 20: 3005-3015 CrossRef ADS Google Scholar
[13] Chang B, Zhao G, Chen Z, Li P, Li L. D2D transmission scheme in URLLC enabled real-time wireless control systems for tactile internet. In: Proceedings of IEEE Global Communications Conference, 2019. 1--6. Google Scholar
[14] Costa M, Codreanu M, Ephremides A. On the Age of Information in Status Update Systems With Packet Management. IEEE Trans Inform Theor, 2016, 62: 1897-1910 CrossRef Google Scholar
[15] Kaul S, Gruteser M, Rai V, Kenney J. Minimizing age of information in vehicular networks. In: Proceedings of the 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, 2011. 1--9. Google Scholar
[16] Chang B, Li L, Zhao G, et al. Age of information for actuation update in real-time wireless control systems. In: Proceedings of IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2020. Google Scholar
[17] 2-KJ Sched 1998, 1: 15--29. Google Scholar
[18] J. Cho and H. Garcia-Molina. Synchronizing a database to improve freshness. ACM sigmod record, vol. 29, no. 2, pp. 117-128, 2000. DOI: 10.1145/342009.335391. Google Scholar
[19] Kaul S, Yates R, Gruteser M. Real-time status: how often should one update? In: Proceedings of IEEE INFOCOM, 2011. 2731--2735. Google Scholar
[20] Kam C, Kompella S, Ephremides A. Age of information under random updates. In: Proceedings of IEEE International Symposium on Information Theory, 2013. 66--70. Google Scholar
[21] Kaul S, Yates R, Gruteser M. Status updates through queues. In: Proceedings of the 46th Annual Conference on Information Sciences and Systems (CISS), 2012. 1--6. Google Scholar
[22] Kaul S, Yates R, Gruteser M. Real-time status: how often should one update? In: Proceedings of IEEE INFOCOM, 2012. 2731--2735. Google Scholar
[23] Lian R, Pan J, Huang S. Alternative Surface Integral Equation Formulations for Characteristic Modes of Dielectric and Magnetic Bodies. IEEE Trans Antennas Propagat, 2017, 65: 4706-4716 CrossRef ADS Google Scholar
[24] Bacinoglu B T, Sun Y, Uysal E. Optimal status updating with a finite-battery energy harvesting source. J Commun Netw, 2019, 21: 280-294 CrossRef Google Scholar
[25] Zhong J, Yates R, Soljanin E. Timely lossless source coding for randomly arriving symbols. In: Proceedings of IEEE Information Theory Workshop (ITW), 2018. 1--5. Google Scholar
[26] Yates R, Ciblat P, Yener A, Wigger M. Age-optimal constrained cache updating. In: Proceedings of IEEE International Symposium on Information Theory (ISIT), 2017. 141--145. Google Scholar
[27] T. Ornee Sun Y. Sampling for remote estimation through queues: age of information and beyond. In: Proceedings of International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOPT), 2019. Google Scholar
[28] Yang H, Arafa A, Quek T, Poor H V. Age-based scheduling policy for federated learning in mobile edge networks. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020. Google Scholar
[29] Zheng X, Zhou S, Niu Z. Context-aware information lapse for timely status updates in remote control systems. 2019,. arXiv Google Scholar
[30] Ayan O, Vilgelm M, Klugel M, Hirche S, Kellerer W. Age-of-information vs. value-of-information scheduling for cellular networked control systems. In: Proceedings of International Conference on Cyber-Physical Systems, 2019. 109--117. Google Scholar
[31] Champati J, Mamduhi M, Johansson K, Gross J. Performance characterization using aoi in a single-loop networked control system. In: Proceedings of IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2019. Google Scholar
[32] Ayan O, Vilgelm M, Kellerer W. Optimal scheduling for discounted age penalty minimization in multi-loop networked control. In: Proceedings of the 17th Annual Consumer Communications & Networking Conference (CCNC), 2020. Google Scholar
[33] J. Zhang Wang C. On the rate-cost of gaussian linear control systems with random communication delays. In: Proceedings of IEEE International Symposium on Information Theory (ISIT), 2018. 2441--2445. Google Scholar
[34] Yates R D, Kaul S K. The Age of Information: Real-Time Status Updating by Multiple Sources. IEEE Trans Inform Theor, 2019, 65: 1807-1827 CrossRef Google Scholar
[35] Kam C, Molnar J, Kompella S. Age of information for queues in tandem. In: Proceedings of IEEE Military Communications Conference (MILCOM), 2018. 462--467. Google Scholar
[36] Demirel B, Gupta V, Quevedo D E. On the Trade-Off Between Communication and Control Cost in Event-Triggered Dead-Beat Control. IEEE Trans Automat Contr, 2017, 62: 2973-2980 CrossRef Google Scholar
[37] Klan?ar G, ?krjanc I. Tracking-error model-based predictive control for mobile robots in real time. Robotics Autonomous Syst, 2007, 55: 460-469 CrossRef Google Scholar
[38] Shortle J, Thompson J, Gross D, Harris C. Fundamentals of Queueing Theory. 5th ed. Piscataway: Wiley Press, 2018. Google Scholar
Figure 1
(Color online) A typical real-time wireless feedback control system with URLLC.
Figure 2
SHS Markov chain for $M/M/1/1$ $\rightarrow$ $M/M/1/2$ tandem queue.
Figure 3
SHS Markov chain for $M/M/1/1^*$ $\rightarrow$ $M/M/1/2^*$ tandem queue.
Figure 4
(Color online) Average EAoI for each system update $n$ in the control process with different tandem queuing models.
Figure 5
(Color online) Average EAoI for system update $n=5$ in different tandem queuing models with different update rate $\mu_1$ and $\mu_2$. (a) $M/M/1/1$ $\rightarrow$ $M/M/1/2$ tandem queuing model; (b) $M/M/1/1^*$ $\rightarrow$ $M/M/1/2^*$ tandem queuing model.
Figure 6
(Color online) Average throughput with different ratio $\mu_2/\mu_1$ for different queuing models.
Figure 7
(Color online) Average throughput for different tandem queuing models with different process rates $\mu_1$ and $\mu_2$. protect łinebreak (a) $M/M/1/1$ $\rightarrow$ $M/M/1/2$ tandem queuing model. (b) $M/M/1/1^*$ $\rightarrow$ $M/M/1/2^*$ tandem queuing model.