logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 58 , Issue 9 : 594201-594201(2015) https://doi.org/10.1007/s11433-015-5688-1

Principles of electromagnetic waves in metasurfaces

More info
  • ReceivedMar 26, 2015
  • AcceptedMay 7, 2015
  • PublishedAug 4, 2015
PACS numbers

Abstract

Metasurfaces are artificially structured thin films with unusual properties on demand. Different from metamaterials, the metasurfaces change the electromagnetic waves mainly by exploiting the boundary conditions, rather than the constitutive pa-rameters in three dimensional (3D) spaces. Despite the intrinsic similarities in the operational principles, there is not a universal theory available for the understanding and design of metasurface-based devices. In this article, we propose the concept of metasurface waves (M-waves) and provide a general theory to describe the principles of them. Most importantly, it is shown that the M-waves share some fundamental properties such as extremely short wavelength, abrupt phase change and strong chromatic dispersion, which make them different from traditional bulk waves. It is shown that these properties can enable many important applications such as subwavelength imaging and lithography, planar optical devices, broadband anti-reflection, absorption and polarization conversion. Our results demonstrated unambiguously that traditional laws of diffraction, refraction, reflection and absorption should be revised by using the novel properties of M-waves. The theory provided here may pave the way for the design of new electromagnetic devices and further improvement of metasurfaces. The exotic properties of metasurfaces may also form the foundations for two new sub-disciplines called “subwavelength surface electromagnetics” and “subwavelength electromagnetics”.


References

[1] Lauterbach M A. Finding, defining and breaking the diffraction barrier in microscopy-a historical perspective. Opt Nanoscopy, 2012, 1: 1-8. Google Scholar

[2] Stelzer E H K, Grill S. The uncertainty principle applied to estimate focal spot dimensions. Opt Commun, 2000, 173: 51-56. Google Scholar

[3] Zheludev N I. What diffraction limit? Nat Mater, 2008, 7: 420-422. Google Scholar

[4] Saleh B E A, Teich M C. Fundamentals of Photonics. 2nd ed. New Jersey: Wiley & Sons, 2007. Google Scholar

[5] Aieta F, Kats M A, Genevet P, et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science, 2015, 347: 1342-1345. Google Scholar

[6] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. Nature, 2003, 424: 824-830. Google Scholar

[7] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields. Science, 2006, 312: 1780-1782. Google Scholar

[8] Pendry J B. Negative refraction makes a perfect lens. Phys Rev Lett, 2000, 85: 3966-3969. Google Scholar

[9] Bloembergen N, Pershan P S. Light waves at the boundary of nonlinear media. Phys Rev, 1962, 128: 606-622. Google Scholar

[10] Hao J, Yuan Y, Ran L, et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys Rev Lett, 2007, 99: 063908. Google Scholar

[11] Pu M, Chen P, Wang Y, et al. Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation. Appl Phys Lett, 2013, 102: 131906. Google Scholar

[12] Grady N K, Heyes J E, Chowdhury D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science, 2013, 340: 1304-1307. Google Scholar

[13] Guo Y, Wang Y, Pu M, et al. Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion. Sci Rep, 2015, 5: 8434. Google Scholar

[14] Knott E F, Lunden C D. The two-sheet capacitive Jaumann absorber. IEEE Trans Antennas Propag, 1995, 43: 1339-1343. Google Scholar

[15] Zadeh A K, Karlsson A. Capacitive circuit method for fast and efficient design of wideband radar absorbers. IEEE Trans Antennas Propag, 2009, 57: 2307-2314. Google Scholar

[16] Pu M, Hu C, Wang M, et al. Design principles for infrared wide-angle perfect absorber based on plasmonic structure. Opt Express, 2011, 19: 17413-17420. Google Scholar

[17] Feng Q, Pu M, Hu C, et al. Engineering the dispersion of metamaterial surface for broadband infrared absorption. Opt Lett, 2012, 37: 2133-2135. Google Scholar

[18] Ye D, Wang Z, Xu K, et al. Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption. Phys Rev Lett, 2013, 111: 187402. Google Scholar

[19] Zhao Y, Liu X X, Alù A. Recent advances on optical metasurfaces. J Opt, 2014, 16: 123001. Google Scholar

[20] Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater, 2014, 13: 139-150. Google Scholar

[21] Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces. Science, 2013, 339: 1232009. Google Scholar

[22] Wood R W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proc Phys Soc London, 1902, 18: 269. Google Scholar

[23] Senior T. Approximate boundary conditions. IEEE Trans Antennas Propag, 1981, 29: 826-829. Google Scholar

[24] Luo X, Ishihara T. Surface plasmon resonant interference nanolithography technique. Appl Phys Lett, 2004, 84: 4780-4782. Google Scholar

[25] Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens. Science, 2005, 308: 534-537. Google Scholar

[26] Liu Z, Lee H, Xiong Y, et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 2007, 315: 1686-1686. Google Scholar

[27] Liu Z, Wei Q, Zhang X. Surface plasmon interference nanolithography. Nano Lett, 2005, 5: 957-961. Google Scholar

[28] Xiang Z. Flying plasmonic lens in the near field for high-speed nanolithography. Nat Nanotechnol, 2008, 3: 733-737. Google Scholar

[29] Xu T, Wang C, Du C, et al. Plasmonic beam deflector. Opt Express, 2008, 16: 4753-4759. Google Scholar

[30] Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334: 333-337. Google Scholar

[31] Luo X, Yan L. Surface plasmon polaritons and its applications. IEEE Photonics J, 2012, 4: 590-595. Google Scholar

[32] Sun S, He Q, Xiao S, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mater, 2012, 11: 426-431. Google Scholar

[33] Pu M, Feng Q, Wang M, et al. Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. Opt Express, 2012, 20: 2246-2254. Google Scholar

[34] Li S, Luo J, Anwar S, et al. An equivalent realization of coherent perfect absorption under single beam illumination. Sci Rep, 2014, 4: 7369. Google Scholar

[35] Vakil A, Engheta N. Transformation optics using graphene. Science, 2011, 332: 1291-1294. Google Scholar

[36] Chen P Y, Alù A. Atomically thin surface cloak using graphene monolayers. ACS Nano, 2011, 5: 5855-5863. Google Scholar

[37] Pu M, Chen P, Wang Y, et al. Strong enhancement of light absorption and highly directive thermal emission in graphene. Opt Express, 2013, 21: 11618-11627. Google Scholar

[38] Hadad Y, Davoyan A R, Engheta N, et al. Extreme and quantized magneto-optics with graphene meta-atoms and metasurfaces. ACS Photonics, 2014, 1: 1068-1073. Google Scholar

[39] Meinzer N, Barnes W L, Hooper I R. Plasmonic meta-atoms and metasurfaces. Nat Photonics, 2014, 8: 889-898. Google Scholar

[40] Holloway C L, Kuester E F, Gordon J A, et al. An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials. IEEE Antennas Propag Mag, 2012, 54: 10-35. Google Scholar

[41] Minovich A E, Miroshnichenko A E, Bykov A Y, et al. Functional and nonlinear optical metasurfaces. Laser Photonics Rev, 2015, 9: 195-213. Google Scholar

[42] Pendry J B, Martin-Moreno L, Garcia-Vidal F J. Mimicking surface plasmons with structured surfaces. Science, 2004, 305: 847-848. Google Scholar

[43] Karlsson A. Approximate boundary conditions for thin structures. IEEE Trans Antennas Propag, 2009, 57: 144-148. Google Scholar

[44] Pu M, Hu C, Huang C, et al. Investigation of Fano resonance in planar metamaterial with perturbed periodicity. Opt Express, 2013, 21: 992-1001. Google Scholar

[45] Maier S A. Plasmonics: Fundamentals and Applications. New York: Springer, 2007. Google Scholar

[46] Jacob Z, Alekseyev L V, Narimanov E. Optical hyperlens: Far-field imaging beyond the diffraction limit. Opt Express, 2006, 14: 8247-8256. Google Scholar

[47] Kildishev A V, Narimanov E E. Impedance-matched hyperlens. Opt Lett, 2007, 32: 3432-3434. Google Scholar

[48] Poddubny A, Iorsh I, Belov P, et al. Hyperbolic metamaterials. Nat Photonics, 2013, 7: 948-957. Google Scholar

[49] Liang G, Wang C, Zhao Z, et al. Squeezing bulk plasmon polaritons through hyperbolic metamaterial for large area deep subwavelength interference lithography. Adv Opt Mater, doi: 10.1002/adom. 201400596. Google Scholar

[50] Wang C, Gao P, Tao X, et al. Far field observation and theoretical analyses of light directional imaging in metamaterial with stacked metal-dielectric films. Appl Phys Lett, 2013, 103: 031911. Google Scholar

[51] Xu T, Agrawal A, Abashin M, et al. All-angle negative refraction and active flat lensing of ultraviolet light. Nature, 2013, 497: 470- 474. Google Scholar

[52] Maas R, Verhagen E, Parsons J, et al. Negative refractive index and higher-order harmonics in layered metallodielectric optical metamaterials. ACS Photonics, 2014, 1: 670-676. Google Scholar

[53] Ren G, Wang C, Yi G, et al. Subwavelength demagnification imaging and lithography using hyperlens with a plasmonic reflector layer. Plasmonics, 2013, 8: 1065-1072. Google Scholar

[54] Chen X, Grzegorczyk T, Wu B, et al. Robust method to retrieve the constitutive effective parameters of metamaterials. Phys Rev E, 2004, 70: 016608. Google Scholar

[55] Choi M, Lee S H, Kim Y, et al. A terahertz metamaterial with unnaturally high refractive index. Nature, 2011, 470: 369-373. Google Scholar

[56] Luo X, Ishihara T. Subwavelength photolithography based on surface-plasmon polariton resonance. Opt Express, 2004, 12: 3055- 3065. Google Scholar

[57] Pfeiffer C, Grbic A. Metamaterial Huygens' surfaces: Tailoring wave fronts with reflectionless sheets. Phys Rev Lett, 2013, 110: 197401. Google Scholar

[58] Ni X, Emani N K, Kildishev A V, et al. Broadband light bending with plasmonic nanoantennas. Science, 2012, 335: 427-427. Google Scholar

[59] Zhang X, Tian Z, Yue W, et al. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities. Adv Mater, 2013, 25: 4567-4572. Google Scholar

[60] Pu M, Zhao Z, Wang Y, et al. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping. Sci Rep, 2015, 5: 9822. Google Scholar

[61] Gilbert D. On the mathematical theory of suspension bridges, with tables for facilitating their construction. Philos Trans R Soc Lond, 1826, 116: 202-218. Google Scholar

[62] Bustamante C, Tinoco I, Maestre M F. Circular differential scattering can be an important part of the circular dichroism of macromolecules. Proc Natl Acad Sci, 1983, 80: 3568-3572. Google Scholar

[63] Lin D, Fan P, Hasman E, et al. Dielectric gradient metasurface optical elements. Science, 2014, 345: 298-302. Google Scholar

[64] Ma X, Pu M, Li X, et al. A planar chiral meta-surface for optical vortex generation and focusing. Sci Rep, 2015, 5: 10365. Google Scholar

[65] Wang Y, Pu M, Hu C, et al. Dynamic manipulation of polarization states using anisotropic meta-surface. Opt Commun, 2014, 319: 14-16. Google Scholar

[66] Doumanis E, Goussetis G, Gómez-Tornero J L, et al. Anisotropic impedance surfaces for linear to circular polarization conversion. IEEE Trans Antennas Propag, 2012, 60: 212-219. Google Scholar

[67] Yang J, Luo F, Kao T S, et al. Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing. Light Sci Appl, 2014, 3: e185. Google Scholar

[68] Pan W, Huang C, Chen P, et al. A low-RCS and high-gain partially reflecting surface antenna. IEEE Trans Antennas Propag, 2014, 62: 945-949. Google Scholar

[69] Rozanov K N. Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Trans Antennas Propag, 2000, 48: 1230- 1234. Google Scholar

[70] Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit. Nat Photonics, 2010, 4: 83-91. Google Scholar

[71] Wang C, Gao P, Zhao Z, et al. Deep sub-wavelength imaging lithography by a reflective plasmonic slab. Opt Express, 2013, 21: 20683-20691. Google Scholar

[72] Gao P, Yao N, Wang C, et al. Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens. Appl Phys Lett, 2015, 106: 093110. Google Scholar

[73] Chaturvedi P, Wu W, Logeeswaran V J, et al. A smooth optical superlens. Appl Phys Lett, 2010, 96: 043102. Google Scholar

[74] Yan Y, Li L, Feng C, et al. Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum. ACS Nano, 2014, 8: 1809-1816. Google Scholar

[75] Rittweger E, Han K Y, Irvine S E, et al. STED microscopy reveals crystal colour centres with nanometric resolution. Nat Photonics, 2009, 3: 144-147. Google Scholar

[76] Rogers E T F, Lindberg J, Roy T, et al. A super-oscillatory lens optical microscope for subwavelength imaging. Nat Mater, 2012, 11: 432-435. Google Scholar

[77] Wang Z, Guo W, Li L, et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat Commun, 2011, 2: 218. Google Scholar

[78] Garcia-Vidal F J, Martin-Moreno L, Ebbesen T W, et al. Light passing through subwavelength apertures. Rev Mod Phys, 2010, 82: 729-787. Google Scholar

[79] Sun S, Yang K Y, Wang C M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett, 2012, 12: 6223-6229. Google Scholar

[80] Pors A, Nielsen M G, Bozhevolnyi S I. Analog computing using reflective plasmonic metasurfaces. Nano Lett, 2015, 15: 791-797. Google Scholar

[81] Aieta F, Genevet P, Kats M, et al. Aberrations of flat lenses and aplanatic metasurfaces. Opt Express, 2013, 21: 31530-31539. Google Scholar

[82] Pu M, Chen P, Wang C, et al. Broadband anomalous reflection based on low-Q gradient meta-surface. AIP Adv, 2013, 3: 052136. Google Scholar

[83] Di Francia G T. Super-gain antennas and optical resolving power. G Suppl Nuovo Cim, 1952, 9: 426-438. Google Scholar

[84] Born M, Wolf E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge: Cambridge University Press, 1999. Google Scholar

[85] Canales V F, de Juana D M, Cagigal M P. Superresolution in compensated telescopes. Opt Lett, 2004, 29: 935-937. Google Scholar

[86] Land E H. Polarizing refracting bodies. US Patent, 1933, 1918848. Google Scholar

[87] Ma X, Pan W, Huang C, et al. An active metamaterial for polarization manipulating. Adv Opt Mater, 2014, 2: 945-949. Google Scholar

[88] Robbie K, Brett M J, Lakhtakia A. Chiral sculptured thin films. Nature, 1996, 384: 616. Google Scholar

[89] Gansel J K, Thiel M, Rill M S, et al. Gold helix photonic metamaterial as broadband circular polarizer. Science, 2009, 325: 1513-1515. Google Scholar

[90] Lerosey G, de Rosny J, Tourin A, et al. Focusing beyond the diffraction limit with far-field time reversal. Science, 2007, 315: 1120- 1122. Google Scholar

[91] Woltersdorff W. Über die optischen Konstanten dünner Metallschichten im langwelligen Ultrarot. Z Für Phys Hadrons Nucl, 1934, 91: 230-252. Google Scholar

[92] Knott E F, Shaeffer J F, Tuley M T. Radar Cross Section, 2nd ed. USA: SciTech Publishing, 2004. Google Scholar

[93] Salisbury W W. Absorbent body for electromagnetic waves. US Patent, 1952: 2599944. Google Scholar

[94] Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber. Phys Rev Lett, 2008, 100: 207402. Google Scholar

[95] Hu C, Zhao Z, Chen X, et al. Realizing near-perfect absorption at visible frequencies. Opt Express, 2009, 17: 11039-11044. Google Scholar

[96] Pu M, Wang M, Hu C, et al. Engineering heavily doped silicon for broadband absorber in the terahertz regime. Opt Express, 2012, 20: 25513-25519. Google Scholar

[97] Planck M, Masius M. The Theory of Heat Radiation. Philadelphia: P. Blakiston's Son & Co. 1914. Google Scholar

[98] Chong Y D, Ge L, Cao H, et al. Coherent perfect absorbers: Time-reversed lasers. Phys Rev Lett, 2010, 105: 053901. Google Scholar

[99] Pu M, Feng Q, Hu C, et al. Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film. Plasmonics, 2012, 7: 733-738. Google Scholar

[100] Wan W, Chong Y, Ge L, et al. Time-reversed lasing and interferometric control of absorption. Science, 2011, 331: 889-892. Google Scholar

[101] Chen P Y, Argyropoulos C, Aù A. Broadening the cloaking bandwidth with non-Foster metasurfaces. Phys Rev Lett, 2013, 111: 233001. Google Scholar

[102] Aspelmeyer M, Kippenberg T J, Marquardt F. Cavity optomechanics. Rev Mod Phys, 2014, 86: 1391. Google Scholar

[103] Xiong H, Si L. Review of cavity optomechanics in the weak- coupling regime: From linearization to intrinsic nonlinear interactions. Sci China-Phys Mech Astron, 2015, 58: 050302. Google Scholar

[104] Boardman A D, Grimalsky V V, Kivshar Y S, et al. Active and tunable metamaterials. Laser Photonics Rev, 2011, 5: 287-307. Google Scholar

[105] Chen H-T, Padilla W J, Zide J M O, et al. Active terahertz metamaterial devices. Nature, 2006, 444: 597-600. Google Scholar

[106] Wu X, Hu C, Wang Y, et al. Active microwave absorber with the dual-ability of dividable modulation in absorbing intensity and frequency. AIP Adv, 2013, 3: 022114. Google Scholar

[107] Lee J, Jung S, Chen P-Y, et al. Ultrafast electrically tunable polaritonic metasurfaces. Adv Opt Mater, 2014, 2: 1057-1063. Google Scholar

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号