Finding the electromagnetic (EM) counterpart of binary compact star merger, especially the binary neutron star (BNS) merger, is critically important for gravitational wave (GW) astronomy, cosmology and fundamental physics. On Aug. 17, 2017, Advanced LIGO and
from GW170817, its observation helped to confirm the unexpected weak and soft nature of GRB 170817A. Meanwhile,
This work made use of the data from the Insight-HXMT mission
a project funded by China National Space Administration(CNSA)
Chinese Academy of Sciences (CAS). the National Program on Key Research and Development Project(2016YFA0400800) from the Minister of Science and Technology of China (MOST)
Strategic Priority Research Program of the Chinese Academy of Sciences(XDB23040400)
the Hundred Talent Program of Chinese Academy of Sciences
National Natural Science Foundation of China(11233001,11503027,11403026)
This work made use of the data from the Insight-HXMT mission, a project funded by China National Space Administration (CNSA) and the Chinese Academy of Sciences (CAS). This work was supported by the National Program on Key Research and Development Project (Grant No. 2016YFA0400800) from the Ministry of Science and Technology of China (MOST), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB23040400), the Hundred Talent Program of Chinese Academy of Sciences, the National Natural Science Foundation of China (Grant Nos. 11233001, 11503027, 11403026, 11473027, and 11733009).
[1] Abbott B. P., et al. (LIGO Scientific Collaboration and Virgo Collaboration). Phys. Rev. Lett., 2016, 116: 061102 CrossRef PubMed ADS arXiv Google Scholar
[2] Metzger B. D., Berger E.. Astrophys. J., 2012, 746: 48 CrossRef ADS arXiv Google Scholar
[3] S. Nissanke, D. E. Holz, N. Dalal, S. A. Hughes, J. L. Sievers, and C. M. Hirata, aXiv: 1307.2638. Google Scholar
[4] Will C. M.. Phys. Rev. D, 1998, 57: 2061 CrossRef ADS Google Scholar
[5] Abbott B. P., et al. (LV EM teams). Astrophys. J. Lett., 2016, 826: L13 CrossRef ADS arXiv Google Scholar
[6] Connaughton V., et al. (Fermi/GBM team). Astrophys. J. Lett., 2016, 826: L6 CrossRef ADS arXiv Google Scholar
[7] S. L. Xiong, arXiv: 1605.05447. Google Scholar
[8] Greiner J., Burgess J. M., Savchenko V., Yu H. F.. Astrophys. J. Lett., 2016, 827: L38 CrossRef ADS arXiv Google Scholar
[9] Savchenko V., et al. (INTEGRAL team). Astrophys. J., 2016, 820: L36 CrossRef ADS arXiv Google Scholar
[10] Liu Y., Zhang S. N.. Phys. Lett. B, 2009, 679: 88 CrossRef ADS arXiv Google Scholar
[11] S.-N. Zhang, Y. Liu, S. Yi, Z. Dai, and C. Huang, arXiv: 1604.02537. Google Scholar
[12] Zhang B.. Astrophys. J. Lett., 2016, 827: L31 CrossRef ADS arXiv Google Scholar
[13] Loeb A.. Astrophys. J. Lett., 2016, 819: L21 CrossRef ADS arXiv Google Scholar
[14] Abadie J., et al. (LIGO Scientific Collaboration and Virgo Collaboration). Class. Quantum Grav., 2010, 27: 173001 CrossRef ADS arXiv Google Scholar
[15] Li T. P., Wu M.. Astrophys. Space Sci., 1993, 206: 91 CrossRef ADS Google Scholar
[16] Li T. P., Wu M.. Astrophys. Space Sci., 1994, 215: 213 CrossRef ADS Google Scholar
[17]
S. Zhang, F. J. Lu, S. N. Zhang, and T. P. Li, Int. Soc. Opt. Photon.
[18] Agostinelli S., et al. (Geant4 Collaboration). Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrometers Detect. Assoc. Equip., 2003, 506: 250 CrossRef ADS Google Scholar
[19] Abbott B. P., et al. (LIGO Scientific Collaboration and Virgo Collaboration). Phys. Rev. Lett., 2017, 119: 161101 CrossRef Google Scholar
[20] Goldstein A., et al. (Fermi/GBM team). Astrophys. J. Lett., 2017, 848: L14 CrossRef Google Scholar
[21] Savchenko V., et al. (INTEGRAL/SPI-ACS team). Astrophys. J. Lett., 2017, 848: L15 CrossRef Google Scholar
[22] Abbott B. P., et al. (LIGO Scientific Collaboration and Virgo Collaboration, Fermi/GBM team, INTEGRAL/SPI-ACS team). Astrophys. J. Lett., 2017, 848: L13 CrossRef Google Scholar
[23] Abbott B. P., et al. (LIGO Scientific Collaboration and Virgo Collaboration, LV EM teams). Astrophys. J. Lett., 2017, 848: L12 CrossRef Google Scholar
[24] Coulter D. A., Foley R. J., Kilpatrick C. D., Drout M. R., Piro A. L., Shappee B. J., Siebert M. R., Simon J. D., Ulloa N., Kasen D., Madore B. F., Murguia-Berthier A., Pan Y. C., Prochaska J. X., Ramirez-Ruiz E., Rest A., Rojas-Bravo C.. Science, 2017, : eaap9811 CrossRef Google Scholar
[25]
J. Y. Liao, C. K. Li, M. Y. Ge, Y. Huang, Z. W. Li, S. L. Xiong, Y. Liu, C. Z. Liu, X. F. Li, Z. Chang, X. F. Lu, J. L. Zhao, A. M. Zhang, Y. F. Zhang, C. L. Zou, Y. J. Jin, Z. Zhang, T. P. Li, F. J. Lu, L. M. Song, H. Y. Wang, M. Wu, Y. P. Xu, and S. N. Zhang, Gamma-ray Coord. Network
[26] Kuiper L., Hermsen W., Cusumano G., Diehl R., Schönfelder V., Strong A., Bennett K., McConnell M. L.. Astron. Astrophys., 2001, 378: 918 CrossRef ADS Google Scholar
[27] Troja E., Rosswog S., Gehrels N.. Astrophys. J., 2010, 723: 1711 CrossRef ADS arXiv Google Scholar
[28] Kaneko Y., Bostancı Z. F., Göğüş E., Lin L.. Mon. Not. R. Astron. Soc., 2015, 452: 824 CrossRef ADS arXiv Google Scholar
[29] Band D., Matteson J., Ford L., Schaefer B., Palmer D., Teegarden B., Cline T., Briggs M., Paciesas W., Pendleton G., Fishman G., Kouveliotou C., Meegan C., Wilson R., Lestrade P.. Astrophys. J., 1993, 413: 281 CrossRef ADS Google Scholar
Figure 1
(a)
Figure 2
Simulated total effective area of 18 HE CsI detectors for GRB detection in regular mode (a) and GRB mode (b). Each line represents the effective area for each theta angle averaged in azimuthal (phi angle from 0 to
Figure 3
Light curves of GRB 170904A (a) and GRB 170921C (b) detected by
Figure 4
(a) The sky area monitored by HE for gamma-ray transients when GW170817 happened. The whole area of
Figure 5
Light curves of 18 HE CsI detectors around GW170817 and GRB 170817A. From (a) to (d) the time ranges and bin widths are: [T
Figure 6
Simulated counts rate of 18 CsI detectors for GRB170817A using the GBM spectrum
Figure 7
Crab pulse profile accumulated in the calibration observation, normalized with the maximum 1 and minimum 0. Phase 0 represents the position of the X-ray main peak observed by the HE NaI detector.
Figure 8
Spectral model | Alpha | Beta | |
Band_1 | ‒1.9 | ‒3.7 | 70 |
Band_2 | ‒1.0 | ‒2.3 | 230 |
Band_3 | 0.0 | ‒1.5 | 1000 |
Comp_1 | ‒1.9 | ‒ | 70 |
Comp_2 | ‒1.0 | ‒ | 230 |
Comp_3 | 0.0 | ‒ | 1000 |
PL_1 | ‒2.0 | ‒ | ‒ |
PL_2 | ‒1.5 | ‒ | ‒ |
PL_3 | ‒1.0 | ‒ | ‒ |
Upper limits (erg/cm2/s) | Band_1 | Band_2 | Band_3 | Comp_1 | Comp_2 | Comp_3 | PL_1 | PL_2 | PL_3 | ||
GRB170817A | ‒0.30 | 0.00 | 1.4×10‒6 | 1.9×10‒6 | 3.4×10‒6 | 1.3×10‒6 | 1.2×10‒6 | 3.0×10‒6 | 2.2×10‒6 | 2.8×10‒6 | 2.1×10‒6 |
GRB170817A | 0.00 | 0.25 | 1.6×10‒6 | 2.2×10‒6 | 3.6×10‒6 | 1.6×10‒6 | 1.4×10‒-6 | 3.3×10‒6 | 2.6×10‒6 | 3.1×10‒6 | 2.3×10‒6 |
Precursor | ‒400.05 | ‒399.95 | 2.3×10‒6 | 3.1×10‒6 | 4.8×10-6 | 2.3×10‒6 | 2.1×10‒6 | 4.4×10‒6 | 3.6×10‒6 | 4.1×10‒6 | 2.9×10‒6 |
Precursor | ‒400.5 | ‒399.5 | 7.7×10‒7 | 1.1×10‒6 | 1.8×10‒6 | 7.5×10‒7 | 6.8×10‒7 | 1.7×10‒6 | 1.3×10‒6 | 1.7×10‒6 | 1.1×10‒6 |
Extended | 299.5 | 300.5 | 8.9×10‒7 | 1.2×10‒6 | 2.0×10‒6 | 8.7×10‒7 | 7.9×10‒7 | 1.8×10‒6 | 1.4×10‒6 | 1.8×10‒6 | 1.2×10‒6 |
Extended | 295 | 305 | 3.1×10‒7 | 4.3×10‒7 | 6.4×10‒7 | 3.0×10‒7 | 2.8×10‒7 | 6.1×10‒7 | 5.2×10‒7 | 6.1×10‒7 | 4.1×10‒7 |