SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 61 , Issue 9 : 097511(2018) https://doi.org/10.1007/s11433-018-9231-4

Critical fluctuations upon photoinduced phase transitionin manganite strips

More info
  • ReceivedApr 12, 2018
  • AcceptedApr 24, 2018
  • PublishedMay 17, 2018
PACS numbers


Light, acting as an external stimulus to induce various intriguing phenomena ranging from photovoltaics to photoinduced catalysis, exerts prominent effects in strongly correlated systems. It would be of particular interest to investigate photon-induced emerging phenomena in spatially confined strongly correlated systems, which are important for applications of these materials in future electronic devices. Colossal magnetoresistive manganites materials offer an ideal platform for such study due to their sensitivity to photo-excitation. Here, we fabricated 900 nm wide La0.325Pr0.3Ca0.375MnO3 strips, whose width is comparable to the size of the electronic phase separation (EPS) domains in this system. We observed the photoinduced critical fluctuations in the strips, where abrupt resistivity jumps occurred upon photoinduced phase transition depending sensitively on the light intensity. Based on the microscopic views of the EPS domains under photoexcitation, we conclude that such photo-induced resistivity fluctuations originate from the photoinduced phase fluctuations of individual EPS domains when their size becomes comparable to the strip width.


This work was supported by the National Key Research and Development Program of China (Grant No. 2016YFA0300702), the National Basic Research Program of China (973 Program) (Grant No. 2014CB921104), the Program of Shanghai Academic Research Leader (Grant No. 17XD1400400), and the National Natural Science Foundation of China (Grant No. 11504053). We would like to thank Tao Jiang for his assistance in the optical instrument set-up. We are grateful for other experimental assistance and variable discussion from Kai Du, WenGang Wei, YunFang Kou, YinYan Zhu, Yu Bai.


[1] S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen, Science 264, 41 (1994). Google Scholar

[2] Xiong G. C., Li Q., Ju H. L., Bhagat S. M., Lofland S. E., Greene R. L., Venkatesan T.. Appl. Phys. Lett., 1995, 67: 3031 CrossRef ADS Google Scholar

[3] Dhoot A. S., Israel C., Moya X., Mathur N. D., Friend R. H.. Phys. Rev. Lett., 2009, 102: 136402 CrossRef PubMed ADS Google Scholar

[4] Das N., Tsui S., Xue Y. Y., Wang Y. Q., Chu C. W.. Phys. Rev. B, 2008, 78: 235418 CrossRef ADS Google Scholar

[5] Mercey B., Hervieu M., Prellier W., Wolfman J., Simon C., Raveau B.. Appl. Phys. Lett., 2001, 78: 3857 CrossRef ADS Google Scholar

[6] Ward T. Z., Zhang X. G., Yin L. F., Zhang X. Q., Liu M., Snijders P. C., Jesse S., Plummer E. W., Cheng Z. H., Dagotto E., Shen J.. Phys. Rev. Lett., 2009, 102: 087201 CrossRef PubMed ADS Google Scholar

[7] Nakajima T., Tsuchiya T., Ueda Y., Kumagai T.. Phys. Rev. B, 2009, 80: 020401(R) CrossRef ADS Google Scholar

[8] Nakajima T., Tsuchiya T., Ueda Y., Manabe T.. J. Phys. Soc. Jpn., 2010, 79: 014712 CrossRef ADS Google Scholar

[9] Kiryukhin V., Casa D., Hill J. P., Keimer B., Vigliante A., Tomioka Y., Tokura Y.. Nature, 1997, 386: 813 CrossRef ADS Google Scholar

[10] Miyano K., Tanaka T., Tomioka Y., Tokura Y.. Phys. Rev. Lett., 1997, 78: 4257 CrossRef ADS Google Scholar

[11] Takubo N., Ogimoto Y., Nakamura M., Tamaru H., Izumi M., Miyano K.. Phys. Rev. Lett., 2005, 95: 017404 CrossRef PubMed ADS Google Scholar

[12] Takubo N., Onishi I., Takubo K., Mizokawa T., Miyano K.. Phys. Rev. Lett., 2008, 101: 177403 CrossRef PubMed ADS Google Scholar

[13] Dai J. M., Song W. H., Wang S. G., Wang K. Y., Ye S. L., Du J. J., Sun Y. P.. J. Appl. Phys., 2001, 89: 6967 CrossRef ADS Google Scholar

[14] Yue Z. J., Zhao K., Ni H., Zhao S. Q., Kong Y. C., Wong H. K., Wang A. J.. J. Phys. D-Appl. Phys., 2001, 44: 095103 CrossRef ADS Google Scholar

[15] Fiebig M., Miyano K., Tomioka Y., Tokura Y.. Science, 1998, 280: 1925 CrossRef ADS Google Scholar

[16] Smolyaninov I. I., Smolyaninova V. N., Davis C. C., Kim B. G., Cheong S. W., Greene R. L.. Phys. Rev. Lett., 2001, 87: 127204 CrossRef PubMed ADS Google Scholar

[17] Polli D., Rini M., Wall S., Schoenlein R. W., Tomioka Y., Tokura Y., Cerullo G., Cavalleri A.. Nat. Mater., 2007, 6: 643 CrossRef PubMed ADS Google Scholar

[18] Ehrke H., Tobey R. I., Wall S., Cavill S. A., Först M., Khanna V., Garl T., Stojanovic N., Prabhakaran D., Boothroyd A. T., Gensch M., Mirone A., Reutler P., Revcolevschi A., Dhesi S. S., Cavalleri A.. Phys. Rev. Lett., 2011, 106: 217401 CrossRef PubMed ADS arXiv Google Scholar

[19] McGill S. A., Miller R. I., Torrens O. N., Mamchik A., Chen I. W., Kikkawa J. M.. Phys. Rev. B, 2005, 71: 075117 CrossRef ADS Google Scholar

[20] Hao L., Wang J., Xing D. Y.. Phys. Rev. B, 2006, 74: 014440 CrossRef ADS Google Scholar

[21] Zhai H. Y., Ma J. X., Gillaspie D. T., Zhang X. G., Ward T. Z., Plummer E. W., Shen J.. Phys. Rev. Lett., 2006, 97: 167201 CrossRef PubMed ADS Google Scholar

[22] Ward T. Z., Liang S., Fuchigami K., Yin L. F., Dagotto E., Plummer E. W., Shen J.. Phys. Rev. Lett., 2008, 100: 247204 CrossRef PubMed ADS Google Scholar

[23] Alagoz H. S., Jeon J., Boos R., Ahangharnejhad R. H., Chow K. H., Jung J.. Appl. Phys. Lett., 2014, 105: 162409 CrossRef ADS Google Scholar

[24] Guo H., Noh J. H., Dong S., Rack P. D., Gai Z., Xu X., Dagotto E., Shen J., Ward T. Z.. Nano Lett., 2013, 13: 3749 CrossRef PubMed ADS arXiv Google Scholar

[25] Uehara M., Mori S., Chen C. H., Cheong S. W.. Nature, 1999, 399: 560 CrossRef ADS Google Scholar

[26] Zhang L., Israel C., Biswas A., Greene R. L., de Lozanne A.. Science, 2002, 298: 805 CrossRef PubMed ADS Google Scholar

[27] Singh-Bhalla G., Selcuk S., Dhakal T., Biswas A., Hebard A. F.. Phys. Rev. Lett., 2009, 102: 077205 CrossRef PubMed ADS arXiv Google Scholar

[28] Tokunaga M., Tokunaga Y., Tamegai T.. Phys. Rev. Lett., 2004, 93: 037203 CrossRef PubMed ADS Google Scholar

[29] Ward T. Z., Budai J. D., Gai Z., Tischler J. Z., Yin L., Shen J.. Nat. Phys., 2009, 5: 885 CrossRef ADS Google Scholar

[30] Cauro R., Gilabert A., Contour J. P., Lyonnet R., Medici M. G., Grenet J. C., Leighton C., Schuller I. K.. Phys. Rev. B, 2001, 63: 174423 CrossRef ADS Google Scholar

[31] Liu H., Lin L., Yu Y., Lin H., Zhu Y., Miao T., Bai Y., Shi Q., Cai P., Kou Y., Lan F., Wang W., Zhou X., Dong S., Yin L., Shen J.. Phys. Rev. B, 2017, 96: 195154 CrossRef ADS Google Scholar

  • Figure 1

    (Color online) (a) The scanning electronic microscopy (SEM) image of the ~900 nm LPCMO strip; (b) the temperature dependent magnetic moment (M-T) curve (100 Oe field cooling) of the LPCMO thin film, used to fabricate the strips; (c) temperature dependent resistivity (ρ-T) curves of the 900 nm strips upon laser intensities during the warming process. Lots of kinks can be observed in the 900 nm strip upon warming. The inset of (c) shows that with increasing light intensity, the resistivity peaks of warming curves increases, while the transition temperatures decreases. (d) Temperature dependent resistivity (ρ-T) curves of the 50 μm upon laser intensities during the warming process as reference.

  • Figure 2

    (Color online) (a) The ρ-T curve of the 900 nm strips upon warming with 5.56×103 mW/cm2 laser. The upper and lower insets show the resistivity peaks without illumination and with a high intensity light 9.72×103 mW/cm2. (b) The mean R-square (averaging after 4 temperature cycles) for the 900 nm strip reaches the minimum at the intermediate intensity and the R-square for the 50 μm strip remains the same at different light intensity.

  • Figure 3

    (Color online) (a) The MFM images collected at 150 K with different light intensity: 1.67×103 mW/cm2 (I), 5.33×103 mW/cm2 (II), 9.72×103 mW/cm2 (III). The MFM signal composes of the phase shift of the magnetic tip and the white regions are charge-ordered insulating (COI) domains, while the black regions are ferromagnetic metallic (FMM) domains. (b) The cartoon plot of domain size versus light intensity and the red dotted light denotes the strip width (900 nm). (c) The cartoon showing the evolvement of domain size with light intensity in the strip geometry. As the domain size comparable to the strip width, the resistivity curve of the strip will be the most kinky (II), while too small or too big domains will not induce such obvious fluctuation (I and III).

  • Figure 4

    (Color online) (a) ρ-T curves of the 900 nm strips with magnetic field at a fixed light intensity (5.56×103 mW/cm2). (b) ρ-T curves without illumination for reference. Since in different magnetic fields, the resistivity locates in different ranges, in order to present them in the same figure, the ρ-T curves have been scaled up by certain amount (denoted by ×3, ×4, ×8).

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号