SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 62 , Issue 3 : 037311(2019) https://doi.org/10.1007/s11433-018-9294-4

The Coulomb interaction in van der Waals heterostructures

More info
  • ReceivedJul 10, 2018
  • AcceptedAug 28, 2018
  • PublishedNov 9, 2018
PACS numbers


The giant Stark effect (GSE) in a set of van der Waals (vdW) heterostructures is studied using first-principles methods. A straightforward model based on quasi-Fermi levels is proposed to describe the influence of an external perpendicular electric field on both band gap and band edges. Although a general linear GSE is observed, which is induced by the almost linear variation of the band edges of each layer in the heterostructures, when vdW heterostructures is subjected to small electric fields the variation becomes nonlinear. This can be attributed to the band offsets-induced interlayer charge transfer and resulted intra- and inter-layer Coulomb interactions. Our work, thus offers new insight into the mechanism of the nonlinear GSE in vdW heterostructures, which is important for the applications of vdW heterostructures on nanoelectronic devices.

Funded by

the National Key Research and Development Program of China(Grant,No.,2016YFB0700700)

the National Natural Science Foundation of China(Grant,Nos.,61622406,11674310,61571415,61427901,51502283,U1530401)


This work was supported by the National Key Research and Development Program of China (Grant No. 2016YFB0700700), and the National Natural Science Foundation of China (Grant Nos. 61622406, 11674310, 61571415, 61427901, 51502283, and U1530401).

Contributions statement

These authors contributed equally to this work.


Supporting Information

The supporting information is available online at phys.scichina.com and http://link.springer.com/journal/11433. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


[1] Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A.. Science, 2004, 306: 666 CrossRef PubMed ADS Google Scholar

[2] Coleman J. N., Lotya M., O’Neill A., Bergin S. D., King P. J., Khan U., Young K., Gaucher A., De S., Smith R. J., Shvets I. V., Arora S. K., Stanton G., Kim H. Y., Lee K., Kim G. T., Duesberg G. S., Hallam T., Boland J. J., Wang J. J., Donegan J. F., Grunlan J. C., Moriarty G., Shmeliov A., Nicholls R. J., Perkins J. M., Grieveson E. M., Theuwissen K., McComb D. W., Nellist P. D., Nicolosi V.. Science, 2011, 331: 568 CrossRef PubMed ADS Google Scholar

[3] Tongay S., Zhou J., Ataca C., Lo K., Matthews T. S., Li J., Grossman J. C., Wu J.. Nano Lett., 2012, 12: 5576 CrossRef PubMed ADS Google Scholar

[4] Zeng Z., Yin Z., Huang X., Li H., He Q., Lu G., Boey F., Zhang H.. Angew. Chem. Int. Ed., 2011, 50: 11093 CrossRef PubMed Google Scholar

[5] Li L., Yu Y., Ye G. J., Ge Q., Ou X., Wu H., Feng D., Chen X. H., Zhang Y.. Nat. Nanotech., 2014, 9: 372 CrossRef PubMed ADS arXiv Google Scholar

[6] Cui Y., Li B., Li J. B., Wei Z. M.. Sci. China-Phys. Mech. Astron., 2018, 61: 016801 CrossRef ADS Google Scholar

[7] Xue X. X., Feng Y. X., Liao L., Chen Q. J., Wang D., Tang L. M., Chen K.. J. Phys.-Condens. Matter, 2018, 30: 125001 CrossRef PubMed ADS Google Scholar

[8] Mayorov A. S., Gorbachev R. V., Morozov S. V., Britnell L., Jalil R., Ponomarenko L. A., Blake P., Novoselov K. S., Watanabe K., Taniguchi T., Geim A. K.. Nano Lett., 2011, 11: 2396 CrossRef PubMed ADS arXiv Google Scholar

[9] Tang L. P., Tang L. M., Geng H., Yi Y. P., Wei Z., Chen K. Q., Deng H. X.. Appl. Phys. Lett., 2018, 112: 012101 CrossRef ADS Google Scholar

[10] Hong X., Kim J., Shi S. F., Zhang Y., Jin C., Sun Y., Tongay S., Wu J., Zhang Y., Wang F.. Nat. Nanotech., 2014, 9: 682 CrossRef PubMed ADS arXiv Google Scholar

[11] Rivera P., Schaibley J. R., Jones A. M., Ross J. S., Wu S., Aivazian G., Klement P., Seyler K., Clark G., Ghimire N. J., Yan J., Mandrus D. G., Yao W., Xu X.. Nat. Commun., 2015, 6: 6242 CrossRef PubMed ADS arXiv Google Scholar

[12] Deng Y., Luo Z., Conrad N. J., Liu H., Gong Y., Najmaei S., Ajayan P. M., Lou J., Xu X., Ye P. D.. ACS Nano, 2014, 8: 8292 CrossRef PubMed Google Scholar

[13] Ishigami M., Sau J. D., Aloni S., Cohen M. L., Zettl A.. Phys. Rev. Lett., 2005, 94: 056804 CrossRef PubMed ADS Google Scholar

[14] Zheng F., Liu Z., Wu J., Duan W., Gu B. L.. Phys. Rev. B, 2008, 78: 085423 CrossRef ADS Google Scholar

[15] Khoo K. H., Mazzoni M. S. C., Louie S. G.. Phys. Rev. B, 2004, 69: 201401 CrossRef ADS Google Scholar

[16] Bennett A. J., Patel R. B., Skiba-Szymanska J., Nicoll C. A., Farrer I., Ritchie D. A., Shields A. J.. Appl. Phys. Lett., 2010, 97: 031104 CrossRef ADS arXiv Google Scholar

[17] Park C. H., Louie S. G.. Nano Lett., 2008, 8: 2200 CrossRef PubMed ADS arXiv Google Scholar

[18] Takenobu T., Murayama Y., Iwasa Y.. Appl. Phys. Lett., 2006, 89: 263510 CrossRef ADS Google Scholar

[19] Koenig S. P., Doganov R. A., Schmidt H., Castro Neto A. H., Özyilmaz B.. Appl. Phys. Lett., 2014, 104: 103106 CrossRef ADS arXiv Google Scholar

[20] Ramasubramaniam A., Naveh D., Towe E.. Phys. Rev. B, 2014, 84: 205325 CrossRef ADS Google Scholar

[21] Furchi M. M., Pospischil A., Libisch F., Burgdörfer J., Mueller T.. Nano Lett., 2014, 14: 4785 CrossRef PubMed ADS arXiv Google Scholar

[22] Huang L., Huo N., Li Y., Chen H., Yang J., Wei Z., Li J., Li S. S.. J. Phys. Chem. Lett., 2015, 6: 2483 CrossRef PubMed Google Scholar

[23] Huang L., Li J.. Appl. Phys. Lett., 2016, 108: 083101 CrossRef ADS Google Scholar

[24] Ding Y., Wang Y.. Appl. Phys. Lett., 2013, 103: 043114 CrossRef ADS Google Scholar

[25] Lu N., Guo H., Li L., Dai J., Wang L., Mei W. N., Wu X., Zeng X. C.. Nanoscale, 2014, 6: 2879 CrossRef PubMed ADS arXiv Google Scholar

[26] Padilha J. E., Fazzio A., da Silva A. J. R.. Phys. Rev. Lett., 2015, 114: 066803 CrossRef PubMed ADS Google Scholar

[27] Kresse G., Furthmüller J.. Phys. Rev. B, 1996, 54: 11169 CrossRef ADS Google Scholar

[28] Kresse G., Furthmüller J.. Comput. Mater. Sci., 1996, 6: 15 CrossRef Google Scholar

[29] Blöchl P. E.. Phys. Rev. B, 1994, 50: 17953 CrossRef ADS Google Scholar

[30] Perdew J. P., Burke K., Ernzerhof M.. Phys. Rev. Lett., 1996, 77: 3865 CrossRef PubMed ADS Google Scholar

[31] Grimme S.. J. Comput. Chem., 2006, 27: 1787 CrossRef PubMed Google Scholar

[32] Monkhorst H. J., Pack J. D.. Phys. Rev. B, 1976, 13: 5188 CrossRef ADS Google Scholar

[33] Dolui K., Quek S. Y.. Sci. Rep., 2015, 5: 11699 CrossRef PubMed ADS arXiv Google Scholar

[34] Lee C. H., Lee G. H., van der Zande A. M., Chen W., Li Y., Han M., Cui X., Arefe G., Nuckolls C., Heinz T. F., Guo J., Hone J., Kim P.. Nat. Nanotech., 2014, 9: 676 CrossRef PubMed ADS arXiv Google Scholar

  • Figure 1

    (Color online) The lattice structure of BP/SnS2 and MoSe2/SnS2 vdW heterostructure from top view ((a), (c)) and side view ((b), (d)). The two red dashed frames are rectangle and rhombic supercells of BP/SnS2 and MoSe2/SnS2 bilayers, respectively.

  • Figure 2

    (Color online) (a) Band structures of monolayer MoSe2, monolayer SnS2 and MoSe2/SnS2 bilayer. The Fermi level is set as zero. (b) Evolution of band edges of MoSe2 and SnS2 layer and in MoSe2/SnS2 heterobilayer as a function of external E^. (c) Variation of band gap of MoSe2/SnS2 heterobilayer with external E^. (d) The integrated charge density difference of MoSe2/SnS2 heterobilayer under different external E^. The region in red (blue) corresponds to the SnS2 (MoSe2) layer.

  • Figure 3

    (Color online) Band alignment of MoSe2/SnS2 heterobilayer (a) without an external E^, (b) under a positive E^ and (c) under a negative E^. (d) Evolution of the GSE coefficient of SnS2 layer in different heterobilayers as a function of the surface transferring charge density. (e) The VBM of SnS2 layer in MoSe2/SnS2 heterobilayer varies with the interlayer distance at the presence of different E^.