logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 62 , Issue 10 : 107005(2019) https://doi.org/10.1007/s11433-018-9397-2

A study of the hydrogen bonds effect on the water density and theliquid-liquid transition

More info
  • ReceivedDec 12, 2018
  • AcceptedMar 25, 2019
  • PublishedMay 21, 2019
PACS numbers

Abstract

We study the hydrogen bonds effect on the water density as a function of temperature and pressure from the supercritical region to the metastable supercooled and amorphous phases. We identify two important thermodynamic thresholds, that is $P^{\ast~}\simeq2~{~\rm~kbar}$ and $T^{\ast~}\simeq~315~{~\rm~K}$, that separate two different water behaviors in terms of hydrogen bonding capability. For $T<T^{\ast~}$ and $P<P^{\ast~}$ the formation and stability of hydrogen bonded local structures are enhanced. The additional analyses of the proton NMR chemical shift and of the relaxation time confirm this evidence and highlight the structure breaking effects of the pressure. The investigation of both structural and dynamical quantities allow us to draw a complete picture of the water properties in terms of the temperature-pressure dependence of hydrogen bonding.


Acknowledgment

Sow-Hsin Chen's research at MIT was supported by the U.S. Department of Energy (Grant No. DE-FG02-90ER45429).


References

[1] Ball P.. Chem. Rev., 2008, 108: 74-108 CrossRef PubMed Google Scholar

[2] Debenedetti P. G., Stanley H. E.. Phys. Today, 2003, 56: 40-46 CrossRef ADS Google Scholar

[3] Speedy R. J., Angell C. A.. J. Chem. Phys., 1976, 65: 851-858 CrossRef ADS Google Scholar

[4] Angell C. A., Sichina W. J., Oguni M.. J. Phys. Chem., 1982, 86: 998-1002 CrossRef Google Scholar

[5] Ito K., Moynihan C. T., Angell C. A.. Nature, 1999, 398: 492-495 CrossRef ADS Google Scholar

[6] Proc. R. Soc. Lond. A, 1935, 153: 166-172 CrossRef ADS

[7] Br\"{u}geller P., Mayer E.. Nature, 1980, 288: 569-571 CrossRef ADS Google Scholar

[8] Mishima O., Calvert L. D., Whalley E.. Nature, 1984, 310: 393-395 CrossRef ADS Google Scholar

[9] Mishima O., Calvert L. D., Whalley E.. Nature, 1985, 314: 76-78 CrossRef ADS Google Scholar

[10] Mishima O.. J. Chem. Phys., 1994, 100: 5910-5912 CrossRef ADS Google Scholar

[11] Poole P. H., Sciortino F., Essmann U., Stanley H. E.. Nature, 1992, 360: 324-328 CrossRef ADS Google Scholar

[12] Mallamace F., Broccio M., Corsaro C., Faraone A., Majolino D., Venuti V., Liu L., Mou C. Y., Chen S. H.. Proc. Natl. Acad. Sci. USA, 2007, 104: 424-428 CrossRef PubMed ADS Google Scholar

[13] Mallamace F.. Proc. Natl. Acad. Sci. USA, 2009, 106: 15097-15098 CrossRef PubMed ADS Google Scholar

[14] Xu L., Kumar P., Buldyrev S. V., Chen S. H., Poole P. H., Sciortino F., Stanley H. E.. Proc. Natl. Acad. Sci. USA, 2005, 102: 16558-16562 CrossRef PubMed ADS Google Scholar

[15] Chen S. H., Mallamace F., Mou C. Y., Broccio M., Corsaro C., Faraone A., Liu L.. Proc. Natl. Acad. Sci. USA, 2006, 103: 12974-12978 CrossRef PubMed ADS Google Scholar

[16] Liu L., Chen S. H., Faraone A., Yen C. W., Mou C. Y.. Phys. Rev. Lett., 2005, 95: 117802 CrossRef PubMed ADS Google Scholar

[17] Lascaris E., Hemmati M., Buldyrev S. V., Stanley H. E., Angell C. A.. J. Chem. Phys., 2014, 140: 224502 CrossRef PubMed ADS arXiv Google Scholar

[18] Palmer J. C., Poole P. H., Sciortino F., Debenedetti P. G.. Chem. Rev., 2018, 118: 9129-9151 CrossRef PubMed Google Scholar

[19] Smallenburg F., Sciortino F.. Phys. Rev. Lett., 2015, 115: 015701 CrossRef PubMed ADS arXiv Google Scholar

[20] Mallamace F., Corsaro C., Stanley H. E.. Proc. Natl. Acad. Sci. USA, 2013, 110: 4899-4904 CrossRef PubMed ADS Google Scholar

[21] Mallamace F., Corsaro C., Stanley H. E.. Sci Rep, 2012, 2: 993 CrossRef PubMed ADS Google Scholar

[22] Kim K. H., Sp?h A., Pathak H., Perakis F., Mariedahl D., Amann-Winkel K., Sellberg J. A., Lee J. H., Kim S., Park J., Nam K. H., Katayama T., Nilsson A.. Science, 2017, 358: 1589-1593 CrossRef PubMed ADS Google Scholar

[23] Bernal J. D., Fowler R. H.. J. Chem. Phys., 1933, 1: 515-548 CrossRef ADS Google Scholar

[24] Abascal J. L. F., Vega C.. J. Chem. Phys., 2010, 133: 234502-234502 CrossRef PubMed ADS Google Scholar

[25] Bridgman P. W.. Proc. Am. Acad. Arts Sci., 1912, 47: 441 CrossRef Google Scholar

[26] Grindley T., Lind Jr. J. E.. J. Chem. Phys., 1971, 54: 3983-3989 CrossRef ADS Google Scholar

[27] Kell G. S.. J. Chem. Eng. Data, 1975, 20: 97-105 CrossRef Google Scholar

[28] Kell G. S.. J. Chem. Phys., 1975, 62: 3496-3503 CrossRef ADS Google Scholar

[29] Sorensen C. M.. J. Chem. Phys., 1983, 79: 1455-1461 CrossRef ADS Google Scholar

[30] Hare D. E., Sorensen C. M.. J. Chem. Phys., 1986, 84: 5085-5089 CrossRef ADS Google Scholar

[31] Mishima O.. J. Chem. Phys., 2010, 133: 144503-144503 CrossRef PubMed ADS Google Scholar

[32] Mallamace F., Branca C., Broccio M., Corsaro C., Mou C. Y., Chen S. H.. Proc. Natl. Acad. Sci. USA, 2007, 104: 18387-18391 CrossRef PubMed ADS Google Scholar

[33] Liu D., Zhang Y., Chen C. C., Mou C. Y., Poole P. H., Chen S. H.. Proc. Natl. Acad. Sci. USA, 2007, 104: 9570-9574 CrossRef ADS arXiv Google Scholar

[34] Simpson J. H., Carr H. Y.. Phys. Rev., 1958, 111: 1201-1202 CrossRef ADS Google Scholar

[35] Harris K. R., Newitt P. J.. J. Chem. Eng. Data, 1997, 42: 346-348 CrossRef Google Scholar

[36] Mallamace F., Corsaro C., Mallamace D., Vasi C., Stanley H. E.. Faraday Discuss., 2014, 167: 95 CrossRef ADS Google Scholar

[37] Matubayasi N., Wakai C., Nakahara M., Matubayasi N., Wakai C., Nakahara M.. J. Chem. Phys., 1997, 107: 9133-9140 CrossRef ADS Google Scholar

[38] Modig K., Pfrommer B. G., Halle B.. Phys. Rev. Lett., 2003, 90: 075502 CrossRef PubMed ADS Google Scholar

[39] D. Sebastiani, and M. Parrinello,. Google Scholar

[40] Svishchev I. M., Kusalik P. G.. J. Am. Chem. Soc., 1993, 115: 8270-8274 CrossRef Google Scholar

[41] Hindman J. C.. J. Chem. Phys., 1966, 44: 4582-4592 CrossRef ADS Google Scholar

[42] Hakala M., Nygard K., Manninen S., Huotari S., Buslaps T., Nilsson A., Pettersson L. G. M., H\"{a}m\"{a}l\"{a}inen K.. J. Chem. Phys., 2006, 125: 084504-084504 CrossRef PubMed ADS Google Scholar

[43] Angell C. A., Shuppert J., Tucker J. C.. J. Phys. Chem., 1973, 77: 3092-3099 CrossRef Google Scholar

[44] Mallamace F., Corsaro C., Broccio M., Branca C., Gonzalez-Segredo N., Spooren J., Chen S. H., Stanley H. E.. Proc. Natl. Acad. Sci. USA, 2008, 105: 12725-12729 CrossRef PubMed ADS Google Scholar

[45] L. Chen, T. Gross, and H-D. Lüdeman, Z. Naturforsch. 55a, 473 (2000). Google Scholar

[46] Mallamace F., Branca C., Corsaro C., Leone N., Spooren J., Chen S. H., Stanley H. E.. Proc. Natl. Acad. Sci. USA, 2010, 107: 22457-22462 CrossRef PubMed ADS Google Scholar

[47] Ediger M. D.. Annu. Rev. Phys. Chem., 2000, 51: 99-128 CrossRef PubMed ADS Google Scholar

[48] Xu L., Mallamace F., Yan Z., Starr F. W., Buldyrev S. V., Eugene Stanley H.. Nat. Phys, 2009, 5: 565-569 CrossRef ADS Google Scholar

[49] Stillinger F. H.. Science, 1995, 267: 1935-1939 CrossRef PubMed ADS Google Scholar

[50] Yip S., Short M. P.. Nat. Mater, 2013, 12: 774-777 CrossRef PubMed ADS Google Scholar

[51] Huang Y., Zhang X., Ma Z., Li W., Zhou Y., Zhou J., Zheng W., Sun C. Q.. Sci Rep, 2013, 3: 3005 CrossRef PubMed ADS Google Scholar

[52] Sun C. Q., Zhang X., Fu X., Zheng W., Kuo J., Zhou Y., Shen Z., Zhou J.. J. Phys. Chem. Lett., 2013, 4: 3238-3244 CrossRef PubMed Google Scholar

[53] Galamba N.. J. Phys.-Condens. Matter, 2017, 29: 015101 CrossRef PubMed ADS Google Scholar

[54] Sugimura E., Iitaka T., Hirose K., Kawamura K., Sata N., Ohishi Y.. Phys. Rev. B, 2008, 77: 214103 CrossRef ADS Google Scholar

[55] Benoit M., Marx D., Parrinello M.. Nature, 1998, 392: 258-261 CrossRef ADS Google Scholar

[56] Goncharov A. F., Struzhkin V. V., Mao H., Hemley R. J.. Phys. Rev. Lett., 1999, 83: 1998-2001 CrossRef ADS Google Scholar

[57] Erko M., Wallacher D., Hoell A., Hau? T., Zizak I., Paris O.. Phys. Chem. Chem. Phys., 2012, 14: 3852 CrossRef PubMed ADS Google Scholar

[58] Sciortino F., Gallo P., Tartaglia P., Chen S. H.. Phys. Rev. E, 1996, 54: 6331-6343 CrossRef ADS Google Scholar

[59] Starr F. W., Nielsen J. K., Stanley H. E.. Phys. Rev. Lett., 1999, 82: 2294-2297 CrossRef ADS Google Scholar

[60] Cerveny S., Mallamace F., Swenson J., Vogel M., Xu L.. Chem. Rev., 2016, 116: 7608-7625 CrossRef PubMed Google Scholar

[61] Dehaoui A., Issenmann B., Caupin F.. Proc. Natl. Acad. Sci. USA, 2015, 112: 12020-12025 CrossRef PubMed ADS Google Scholar

[62] De Marzio M., Camisasca G., Rovere M., Gallo P.. J. Chem. Phys., 2017, 146: 084502 CrossRef PubMed ADS Google Scholar

[63] Gallo P., Amann-Winkel K., Angell C. A., Anisimov M. A., Caupin F., Chakravarty C., Lascaris E., Loerting T., Panagiotopoulos A. Z., Russo J., Sellberg J. A., Stanley H. E., Tanaka H., Vega C., Xu L., Pettersson L. G. M.. Chem. Rev., 2016, 116: 7463-7500 CrossRef PubMed Google Scholar

[64] Galamba N.. J. Phys. Chem. B, 2013, 117: 589-601 CrossRef PubMed Google Scholar

[65] Price W. S., Ide H., Arata Y.. J. Phys. Chem. A, 1999, 103: 448-450 CrossRef ADS Google Scholar

[66] Bertolini D., Cassettari M., Salvetti G.. J. Chem. Phys., 1982, 76: 3285-3290 CrossRef ADS Google Scholar

[67] Lang E. W., L\"{u}emann H. D.. Prog. Nucl. Magn. Reson. Spectr., 1993, 25: 507-633 CrossRef Google Scholar

[68] Prielmeier F. X., Lang E. W., Speedy R. J., L\"{u}emann H. D.. Berichte der Bunsengesellschaft f"ur physikalische Chem., 1988, 92: 1111-1117 CrossRef Google Scholar

[69] Sattig M., Vogel M.. J. Phys. Chem. Lett., 2014, 5: 174-178 CrossRef PubMed Google Scholar

  • Figure 1

    (Color online) The water $\textit{P-T}$ phase diagram. $T_{\rm~M}$ and $T_{\rm~H}$ are the melting and the homogeneous ice nucleation temperature, respectively. $T_{\rm~L}$ represents the Widom line, whereas $T_{X}$ is the cubic ice crystallization temperature. The line of the compressibility minima, $\protect\kappa_{T,~{\rm~min}}$ and of the density maxima $\protect\rho_{\max}$ are also reported, as well as the temperature of the $ \protect\kappa~_{T}$ maximum recently observed at the ambient pressure, in confined water [20,21]and droplets [22]. The triple (TP) and the critical (CP) points, the separation line between the high (HDA) and low (HDA) amorphous, the LLT transition line and the LLCP, C$&apos;$, are also illustrated.

  • Figure 2

    (Color online) The water density in the $T$ range $130$-$700{~\rm~K}$ and for different pressures from $1$ bar to $8{~\rm~kbar}$. All the reported data come from many different experiments, in bulk or emulsioned water [25-32], only some data at $1{~\rm~bar}$ dealwith confined water (the ones with a minimum at about $200{~\rm~K}$). Data coming from a MD simulation by means of the TIP4P potential [24]are also reported.

  • Figure 3

    (Color online) The water density scaled to the values assumed at $T^{\ast~}$ . Different behaviors in $\Delta~\protect\rho~^{\ast~}(P,T)$ are observable: for $310<T<360{~\rm~K}$ all the data show a linear $P$ dependence (similar to that of an ideal liquid) also maintained at the higher $P$; for $T>360{~\rm~K}$ the changes due to the Coulomb repulsion over the van der Waals attraction and the pressure effects are evidenced. The inset clearly shows two different behaviors (different curvatures) above and below $\sim~2{~\rm~kbar}$ separated by a dotted line. For $T<T^{\ast~}$ and $P<P^{\ast~}(\sim~2{~\rm~kbar})$, where the water physics is dominated by the HB interaction and thus by the tetrahedral clustering of the LDL phase, all the water thermodynamical anomalies are located. Outside this region instead, water is a normal liquid without significant molecular order.

  • Figure 4

    (Color online) The NMR chemical shift $\protect\delta~(P,T)$ of water. The panel a) reports $\protect\delta~$ at the ambient pressure from the critical point region to the deep supercooled regime, whereas the panel b) illustrates its behavior for some different pressures from $1$ bar to $2.5$ kbar. These data come from different experiments [37-45].

  • Figure 5

    (Color online) Arrhenius plot of the water relaxation times $t_{\protect\alpha}(P,T)$. The reported data deal with different experiments in bulk (samples B [34,65,66]) and confined water (samples C ours,mikael dielectric relaxation [66,69]and NMR self-diffusion [34,44,65,67-69]for the ambient pressure. Whereas the data at different pressures come only from NMR experiments in emulsioned water (droplets of $\sim~10\protect{~\mu}{\rm~m}$ - samples E) [67,68]. The inset illustrates the evolution of $t_{\protect\alpha~}$ for a very large interval ($430$-$125{~\rm~K}$ ) [69]and can be noted that at the temperatures of the LDA ($T=135{~\rm~K}$ and $P=1{~\rm~bar}$) is $t_{\protect\alpha~}\simeq~10~{~\rm~s}$, stressing that in the illustrated $T$ range the $t_{\protect\alpha~}$ evolution covers about $13$ orders of magnitude.

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号