SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 63 , Issue 10 : 104611(2020) https://doi.org/10.1007/s11433-019-1522-4

Damage evolution of PμLSE additive-manufactured micro-lattice metastructures: Synchrotron radiation 3D tomography image-based analysis

More info
  • ReceivedDec 19, 2019
  • AcceptedFeb 5, 2020
  • PublishedMay 12, 2020
PACS numbers


The manufacturing of additives with projection micro litho stereo exposure (PμLSE) has provided an opportunity for the fabrication of metastructures with complex microstructures at micro-nano resolutions. However, the performance evaluation of as-fabricated metastructures is challenging. The benefit of synchrotron radiation-based 3D imaging techniques and advanced image processing methods makes it is feasible to study fabrication defects and damage processes of micro-nanoscale body-centered cubic (BCC) lattices manufactured with PμLSE. First, synchrotron radiation technology is used to capture the structural features inside the micro-lattice samples. Subsequently, several types of statistical defects-based image finite element models are adopted to analyze the failure process of the structure under compression loading. Finally, comparisons between in situ experiments and numerical simulation results are performed for verification. The method of the combined non-destructive testing of synchrotron radiation and image finite element technology provides a robust technique for evaluating the performances of additive-manufactured micro-lattice with complex microstructures.

Funded by

the National Natural Science Foundation of China(Grant,Nos.,11702023,11972081)


This work was supported by the National Natural Science Foundation of China (Grant Nos. 11702023, and 11972081). The authors would like to thank the BMF Precision Technology Co., Ltd. for supporting the micro/nanoscale 3D printing work.


Supporting Information

The supporting information is available online at phys.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


[1] Latture R. M., Rodriguez R. X., Holmes Jr. L. R., Zok F. W.. Acta Mater., 2018, 149: 78 CrossRef Google Scholar

[2] Wu Q., Vaziri A., Asl M. E., Ghosh R., Gao Y., Wei X., Ma L., Xiong J., Wu L.. J. Mech. Phys. Solids, 2019, 125: 112 CrossRef ADS Google Scholar

[3] Hsieh M. T., Endo B., Zhang Y., Bauer J., Valdevit L.. J. Mech. Phys. Solids, 2019, 125: 401 CrossRef ADS arXiv Google Scholar

[4] Gorguluarslan R. M., Choi S. K., Saldana C. J.. J. Mech. Behav. BioMed. Mater., 2017, 71: 428 CrossRef PubMed Google Scholar

[5] Meza L. R., Phlipot G. P., Portela C. M., Maggi A., Montemayor L. C., Comella A., Kochmann D. M., Greer J. R.. Acta Mater., 2017, 140: 424 CrossRef Google Scholar

[6] Tancogne-Dejean T., Mohr D.. Int. J. Mech. Sci., 2018, 141: 101 CrossRef Google Scholar

[7] Wang F.. J. Mech. Phys. Solids, 2018, 114: 303 CrossRef ADS Google Scholar

[8] Qin Y., Qi Q., Scott P. J., Jiang X.. Comput.-Aided Des., 2019, 111: 44 CrossRef Google Scholar

[9] F. Forsberg, R. Mooser, M. Arnold, E. Hack, and P. Wyss, J. Struct. Biol. 164, 3 (2008). Google Scholar

[10] Williams J. J., Yazzie K. E., Padilla E., Chawla N., Xiao X., De Carlo F.. Int. J. Fatigue, 2013, 57: 79 CrossRef Google Scholar

[11] Garcea S. C., Sinclair I., Spearing S. M., Withers P. J.. Compos. Sci. Tech., 2017, 149: 81 CrossRef Google Scholar

[12] A. Haboub, H. A. Bale, J. R. Nasiatka, B. N. Cox, D. B. Marshall,R. O. Ritchie, and A. A. MacDowell, Rev. Sci. Instrum. 85, 8 (2014). Google Scholar

[13] Petit C., Maire E., Meille S., Adrien J.. Mater. Des., 2017, 120: 117 CrossRef Google Scholar

[14] Rosa F., Manzoni S., Casati R.. Mater. Des., 2018, 160: 1010 CrossRef Google Scholar

[15] Amani Y., Dancette S., Delroisse P., Simar A., Maire E.. Acta Mater., 2018, 159: 395 CrossRef Google Scholar

[16] Yu B., Blanc R., Soutis C., Withers P. J.. Compos. Part A-Appl. Sci. Manufact., 2016, 82: 279 CrossRef Google Scholar

[17] M. Blacklock, H. Bale, M. Begley, and B. Cox, J. Mech. Phys. Solids 60, 3 (2012). Google Scholar

[18] R. G. Rinaldi, M. Blacklock, H. Bale, M. R. Begley, and B. N. Cox, J. Mech. Phys. Solids 60, 8 (2012). Google Scholar

[19] Drach A., Drach B., Tsukrov I.. Adv. Eng. Software, 2014, 72: 18 CrossRef Google Scholar

[20] Thompson A. J., El Said B., Ivanov D., Belnoue J. P. H., Hallett S. R.. Int. J. Solids Struct., 2018, 154: 104 CrossRef Google Scholar

[21] Naouar N., Vidal-Salle E., Schneider J., Maire E., Boisse P.. Composite Struct., 2015, 132: 1094 CrossRef Google Scholar

[22] Naouar N., Vidal-Sallé E., Schneider J., Maire E., Boisse P.. Composite Struct., 2014, 116: 165 CrossRef Google Scholar

[23] Straumit I., Lomov S. V., Wevers M.. Compos. Part A-Appl. Sci. Manufact., 2015, 69: 150 CrossRef Google Scholar

[24] G. Fang, C. Chen, S. Yuan, S. Meng, and J. Liang, Appl. Compos. Mater. 25, 3 (2018). Google Scholar

[25] Zhu X., Ai S., Lu X., Cheng K., Ling X., Zhu L., Liu B.. Comput. Mater. Sci., 2014, 85: 38 CrossRef Google Scholar

[26] Kader M. A., Islam M. A., Hazell P. J., Escobedo J. P., Saadatfar M., Brown A. D., Appleby-Thomas G. J.. Int. J. Impact Eng., 2016, 96: 78 CrossRef Google Scholar

[27] Liu L., Kamm P., García-Moreno F., Banhart J., Pasini D.. J. Mech. Phys. Solids, 2017, 107: 160 CrossRef ADS Google Scholar

[28] Song J., Gao L., Cao K., Zhang H., Xu S., Jiang C., Surjadi J. U., Xu Y., Lu Y.. Composite Struct., 2018, 203: 750 CrossRef Google Scholar

[29] Xu Y., Zhang H., Šavija B., Chaves Figueiredo S., Schlangen E.. Mater. Des., 2019, 162: 143 CrossRef Google Scholar

[30] Kunt M.. Signal Process., 1980, 2: 3 CrossRef Google Scholar

[31] Smith M., Guan Z., Cantwell W. J.. Int. J. Mech. Sci., 2013, 67: 28 CrossRef Google Scholar

[32] Li C., Lei H., Liu Y., Zhang X., Xiong J., Zhou H., Fang D.. Int. J. Mech. Sci., 2018, 145: 389 CrossRef Google Scholar

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号