logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 63 , Issue 7 : 276112(2020) https://doi.org/10.1007/s11433-019-1527-0

Highly energetic and flammable metallic glasses

More info
  • ReceivedDec 24, 2019
  • AcceptedFeb 13, 2020
  • PublishedMar 25, 2020
PACS numbers

Abstract

Energetic materials are solids that release a large amount of energy in combustion. The evaluation depends on both combustion heat and ignition temperature. Conventional non-metallic materials have low ignition temperature but small combustion heat, whereas metals have large combustion heat but high ignition temperatures. We show that many metallic glasses, combining the merits of both metals and non-metals, have large combustion heat, approximately twice that of the non-metals, and low ignition temperature that is several hundreds of Kelvin lower than that of the metals. The ease in igniting metallic glass results from the low thermal conductivity of the materials and the storage of energy in their liquid-like atomic structure. Metallic glass ribbons outweigh metallic nanoparticles due to their high production efficiency, low cost and nontoxicity. The findings suggest that metallic glasses are alternative energetic materials.


Funded by

the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB30000000)

National Key Research and Development Plan(2018YFA0703603)

National Natural Science Foundation of China(11790291,61999102,61888102,51871234,51971238)

Natural Science Foundation of Guangdong Province(2019B030302010)


Acknowledgment

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB30000000), the National Key Research and Development Plan (Grant No. 2018YFA0703603), the National Natural Science Foundation of China (Grant Nos. 11790291, 61999102, 61888102, 51871234, and 51971238), and the Natural Science Foundation of Guangdong Province (Grant No. 2019B030302010). HuiFang Li from the Institute of Process Engineering, Chinese Academy of Sciences, and DongWu Chang from the Department of Energy and Power Engineering, Tsinghua University are thanked for the assistance on TGA and bomb calorimeter experiments, respectively. JunTao Huo from the Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, and Ping Wen, Jie Shen and Myong-Chol Ri from the Institute of Physics, Chinese Academy of Sciences are thanked for the stimulating discussions.


Supplement

Supporting Information

The supporting information is available online at phys.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Sikder A. K., Sikder N.. J. Hazard. Mater., 2004, 112: 1 CrossRef PubMed Google Scholar

[2] Badgujar D. M., Talawar M. B., Asthana S. N., Mahulikar P. P.. J. Hazard. Mater., 2008, 151: 289 CrossRef PubMed Google Scholar

[3] Zhang C., Sun C., Hu B., Yu C., Lu M.. Science, 2017, 355: 374 CrossRef PubMed ADS Google Scholar

[4] H. Jia, Acta Armamentarii 2, 70 (1994). Google Scholar

[5] Trunov M. A., Schoenitz M., Dreizin E. L.. Propel. Explos. Pyrotech., 2005, 30: 36 CrossRef Google Scholar

[6] Yagodnikov D. A., Ignatov A. V., Gusachenko E. I.. Combust. Explos. Shock Waves, 2017, 53: 15 CrossRef Google Scholar

[7] Yetter R. A., Risha G. A., Son S. F.. Proc. Combust. Institute, 2009, 32: 1819 CrossRef Google Scholar

[8] Bachels T., Güntherodt H. J., Schäfer R.. Phys. Rev. Lett., 2000, 85: 1250 CrossRef PubMed ADS Google Scholar

[9] Sun J., He L., Lo Y. C., Xu T., Bi H., Sun L., Zhang Z., Mao S. X., Li J.. Nat. Mater., 2014, 13: 1007 CrossRef PubMed ADS Google Scholar

[10] Shoshin Y. L., Mudryy R. S., Dreizin E. L.. Combust. Flame, 2012, 128: 259 CrossRef Google Scholar

[11] Simkó M., Mattsson M. O.. Part Fibre Toxicol, 2010, 7: 42 CrossRef PubMed Google Scholar

[12] Pan J., Wang Y. X., Guo Q., Zhang D., Greer A. L., Li Y.. Nat. Commun., 2018, 9: 560 CrossRef PubMed ADS Google Scholar

[13] Mondal K., Chatterjee U. K., Murty B. S.. J. Alloys Compd., 2007, 433: 162 CrossRef Google Scholar

[14] Wei H., Yoo C. S.. J. Mater. Res., 2012, 27: 2705 CrossRef ADS Google Scholar

[15] Berger B.. CHIMIA, 2004, 58: 363 CrossRef Google Scholar

[16] Long Z., Wei H., Ding Y., Zhang P., Xie G., Inoue A.. J. Alloys Compd., 2009, 475: 207 CrossRef Google Scholar

[17] Zhou Z., Hu X., You Z., Wang Z., Zhou J., Cen K.. ThermoChim. Acta, 2013, 553: 54 CrossRef Google Scholar

[18] Lewandowski J. J., Greer A. L.. Nat. Mater., 2006, 5: 15 CrossRef ADS Google Scholar

[19] J. H. Awbery, and E. Griffiths, Proc. Phys. Soc. 38, 378 (1926). Google Scholar

[20] Vitos L., Ruban A. V., Skriver H. L., Kollár J.. Surf. Sci., 1998, 411: 186 CrossRef Google Scholar

  • Figure 1

    (Color online) Pyrotechnic performance of MG ribbons. (a) Typical ribbons used in the experiments. Performance of the Mg61Cu28Gd11 glassy (b) and crystalline (c) ribbons, La55Co20Al25 glassy (d) and crystalline (e) ribbons in burning.

  • Figure 2

    (Color online) Calorimetry and the stored energy at various states of La55Co20Al25 MG. The specific capacity (a) and stored enthalpy (b) of the material changes in heating.

  • Figure 3

    (Color online) Thermal gravity of the La55Co20Al25 glassy and crystalline ribbons. (a) Mass change in burning; (b) the (∆m/m0)max increases and the Ti decreases with the stored enthalpy (ΔH).

  • Figure 4

    (Color online) The combustion heat (Qm) and the ignition temperature (Ti) of various energetic materials, i.e. non-metals, metals and the MGs.

  • Table 1   Combustion heat of glass Qg, and crystal Qx, their difference ΔQ and the stored enthalpy of glass ∆Hg (all in units of J g−1) of a variety of MGs

    Composition

    Qg

    Qx

    ΔQ

    Hg

    Al85Ni5Y10

    23160

    22622

    538

    40

    Ce68Al10Cu20Co2

    7573

    7064

    509

    28

    Cu46Zr47Al7

    8140

    7780

    360

    52

    La55Co20Al25

    7854

    7314

    540

    49

    Mg61Cu28Gd11

    9880

    9640

    240

    62

    Ti45Cu45Zr5Ni5

    9570

    8873

    697

    32

    Zr55Cu30Ni5Al10

    9455

    9355

    100

    41

    Zr64.13Cu15.75Ni10.12Al10

    10512

    9892

    620

    36

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号