logo

More info
  • ReceivedJan 4, 2019
  • AcceptedJan 11, 2019
  • PublishedFeb 25, 2019

Abstract

There is no abstract available for this article.


Funded by

the National Basic Research Program of China(Grant,No.,2015CB932203)

the National Natural Science Foundation of China(Grant,Nos.,61722501,61377025)

the Beijing Natural Science Foundation(Grant,No.,4164106)

the Scientific Experimental System in Near Space of Chinese Academy of Sciences(Grant,No.,XDA17000000)

and the General Financial Grant from the China Postdoctoral Science Foundation(Grant,No.,2017M620519)


Acknowledgment

This work was supported by the National Basic Research Program of China (Grant No. 2015CB932203), the National Natural Science Foundation of China (Grant Nos. 61722501, and 61377025), the Beijing Natural Science Foundation (Grant No. 4164106), the Scientific Experimental System in Near Space of Chinese Academy of Sciences (Grant No. XDA17000000), and the General Financial Grant from the China Postdoctoral Science Foundation (Grant No. 2017M620519).


Interest statement

These authors contributed equally to this work.


Supplement

Supporting Information

The supporting information is available online at phys.scichina.com and www.springerlink.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Kojima A., Teshima K., Shirai Y., Miyasaka T.. J. Am. Chem. Soc., 2009, 131: 6050 CrossRef PubMed Google Scholar

[2] Burschka J., Pellet N., Moon S. J., Humphry-Baker R., Gao P., Nazeeruddin M. K., Grätzel M.. Nature, 2013, 499: 316 CrossRef PubMed ADS Google Scholar

[3] Jeon N. J., Noh J. H., Yang W. S., Kim Y. C., Ryu S., Seo J., Seok S. I.. Nature, 2015, 517: 476 CrossRef PubMed ADS Google Scholar

[4] Luo D., Yang W., Wang Z., Sadhanala A., Hu Q., Su R., Shivanna R., Trindade G. F., Watts J. F., Xu Z., Liu T., Chen K., Ye F., Wu P., Zhao L., Wu J., Tu Y., Zhang Y., Yang X., Zhang W., Friend R. H., Gong Q., Snaith H. J., Zhu R.. Science, 2018, 360: 1442 CrossRef PubMed ADS Google Scholar

[5] Luo D., Zhao L., Wu J., Hu Q., Zhang Y., Xu Z., Liu Y., Liu T., Chen K., Yang W., Zhang W., Zhu R., Gong Q.. Adv. Mater., 2017, 29: 1604758 CrossRef PubMed Google Scholar

[6] Tu Y., Wu J., He X., Guo P., Wu T., Luo H., Liu Q., Wu Q., Lin J., Huang M., Lan Z., Li S.. J. Mater. Chem. A, 2017, 5: 21161 CrossRef Google Scholar

[7] Zhu R., Lin J. M., Wang W. Z., Zheng C., Wei W., Huang W., Xu Y. H., Peng J. B., Cao Y.. J. Phys. Chem. B, 2008, 112: 1611 CrossRef PubMed Google Scholar

[8] Yang W. S., Park B. W., Jung E. H., Jeon N. J., Kim Y. C., Lee D. U., Shin S. S., Seo J., Kim E. K., Noh J. H., Seok S. I.. Science, 2017, 356: 1376 CrossRef PubMed ADS Google Scholar

[9] Tu Y., Yang X., Su R., Luo D., Cao Y., Zhao L., Liu T., Yang W., Zhang Y., Xu Z., Liu Q., Wu J., Gong Q., Mo F., Zhu R.. Adv. Mater., 2018, 30: 1805085 CrossRef PubMed Google Scholar

[10] Kaltenbrunner M., Adam G., Głowacki E. D., Drack M., Schwödiauer R., Leonat L., Apaydin D. H., Groiss H., Scharber M. C., White M. S., Sariciftci N. S., Bauer S.. Nat. Mater., 2015, 14: 1032 CrossRef PubMed ADS Google Scholar

[11] Lang F., Nickel N. H., Bundesmann J., Seidel S., Denker A., Albrecht S., Brus V. V., Rappich J., Rech B., Landi G., Neitzert H. C.. Adv. Mater., 2016, 28: 8726 CrossRef PubMed Google Scholar

[12] Y. Miyazawa, M. Ikegami, T. Miyasaka, T. Ohshima, M. Imaizumi, and K. Hirose, in Evaluation of radiation tolerance of perovskite solar cell for use in space: 2015 IEEE 42nd Photovoltaic Specialist Conference 2015 (IEEE, New Orleans, 2015). Google Scholar

[13] Miyazawa Y., Ikegami M., Chen H. W., Ohshima T., Imaizumi M., Hirose K., Miyasaka T.. iScience, 2018, 2: 148 CrossRef PubMed Google Scholar

[14] Yang J., Hong Q., Yuan Z., Xu R., Guo X., Xiong S., Liu X., Braun S., Li Y., Tang J., Duan C., Fahlman M., Bao Q.. Adv. Opt. Mater., 2018, 6: 1870080 CrossRef Google Scholar

[15] D. Fan, X. Chen, Z. Li, and X. Mei, Proc. SPIE 9640, 964011 (2015). Google Scholar

[16] R. Hoheisel, D. Wilt, D. Scheiman, P. Jenkins, and R. Walters, in AM0 solar cell calibration under near space conditions: 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC) (IEEE, Denver, 2014). Google Scholar

[17] Mukherjee B., Wu X., Maczka T., Kwan T., Huang Y., Mares V.. Radiat. Measur., 2016, 94: 65 CrossRef ADS Google Scholar

[18] Wang Z., Lin Q., Chmiel F. P., Sakai N., Herz L. M., Snaith H. J.. Nat. Energy, 2017, 2: 17135 CrossRef ADS Google Scholar

[19] Nie W., Blancon J. C., Neukirch A. J., Appavoo K., Tsai H., Chhowalla M., Alam M. A., Sfeir M. Y., Katan C., Even J., Tretiak S., Crochet J. J., Gupta G., Mohite A. D.. Nat. Commun., 2016, 7: 11574 CrossRef PubMed ADS Google Scholar

[20] Domanski K., Roose B., Matsui T., Saliba M., Turren-Cruz S. H., Correa-Baena J. P., Carmona C. R., Richardson G., Foster J. M., De Angelis F., Ball J. M., Petrozza A., Mine N., Nazeeruddin M. K., Tress W., Grätzel M., Steiner U., Hagfeldt A., Abate A.. Energy Environ. Sci., 2017, 10: 604 CrossRef Google Scholar

[21] Shin S. S., Yeom E. J., Yang W. S., Hur S., Kim M. G., Im J., Seo J., Noh J. H., Seok S. I.. Science, 2017, 356: 167 CrossRef PubMed ADS Google Scholar

[22] Niu G., Guo X., Wang L.. J. Mater. Chem. A, 2015, 3: 8970 CrossRef Google Scholar

[23] Song Z., Abate A., Watthage S. C., Liyanage G. K., Phillips A. B., Steiner U., Graetzel M., Heben M. J.. Adv. Energy Mater., 2016, 6: 1600846 CrossRef Google Scholar

[24] Wang Z., Lin Q., Wenger B., Christoforo M. G., Lin Y. H., Klug M. T., Johnston M. B., Herz L. M., Snaith H. J.. Nat. Energy, 2018, 3: 855 CrossRef ADS Google Scholar

[25] Zhao Y., Tan H., Yuan H., Yang Z., Fan J. Z., Kim J., Voznyy O., Gong X., Quan L. N., Tan C. S., Hofkens J., Yu D., Zhao Q., Sargent E. H.. Nat. Commun., 2018, 9: 1607 CrossRef PubMed ADS Google Scholar

[26] Lang F., Shargaieva O., Brus V. V., Neitzert H. C., Rappich J., Nickel N. H.. Adv. Mater., 2018, 30: 1702905 CrossRef PubMed Google Scholar

  • Figure 1

    (Color online) (a) Representative schematic showing the relative position of the Sun, the high-altitude balloon and the Earth (courtesy of National Aeronautics and Space Administration); (b) photograph of launch site; (c) photograph of the high-altitude balloon with a pod in near space; (d) device configuration; (e) unit module (the large-area perovskite solar cell was soldered on the integrated circuit board).

  • Figure 2

    (Color online) (a) Real-time environmental parameters: i, temperature variation; ii, light intensity variation. (b) Transmittance spectra of FTO substrates with or w/o polyimide (PI) filter.

  • Figure 3

    (Color online) Stability of non-encapsulated devices under continuous simulated AM1.5 illumination in ambient environment with 40% humidity, i, normal Voc; ii, normal Jsc; iii, normal FF; iv, normal PCE. (a) Device based on FA0.9Cs0.1PbI3; (b) device based on FA0.81MA0.10Cs0.04PbI2.55Br0.40.

  • Figure 4

    (Color online) Device stability, normal Voc, normal Jsc, normal FF, normal PCE. (a) Device based on FA0.9Cs0.1PbI3 w/o PI filter; (b) device based on FA0.9Cs0.1PbI3 with PI filter; (c) device based on FA0.81MA0.10Cs0.04PbI2.55Br0.40 w/o PI filter; (d) device based on FA0.81MA0.10Cs0.04PbI2.55Br0.40 with PI filter.

  • Table 1   Photovoltaic parameters of the devices at the starting point in near space above the Earth)

    Sample

    Voc (V)

    Jsc (mA cm−2)

    FF

    PCE (%)

    FA0.9Cs0.1PbI3 w/o PI

    1.034

    22.06

    0.3785

    6.41

    FA0.9Cs0.1PbI3 with PI

    0.847

    18.89

    0.3715

    4.35

    FA0.81MA0.10Cs0.04PbI2.55Br0.40 w/o PI

    0.998

    25.98

    0.3273

    6.28

    FA0.81MA0.10Cs0.04PbI2.55Br0.40 with PI

    1.031

    21.36

    0.3697

    6.06