logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 63 , Issue 11 : 117431(2020) https://doi.org/10.1007/s11433-020-1567-7

Heavy fermion quantum criticality: The party is just beginning

Yi-Feng Yang 1,2,3,*
More info
  • ReceivedApr 13, 2020
  • AcceptedApr 21, 2020
  • PublishedMay 15, 2020

Abstract

There is no abstract available for this article.


Acknowledgment

This work was supported by the National Key Research and Development Program of Ministry of Science and Technology of China (Grant No. 2017YFA0303103), and the National Natural Science Foundation of China (Grant Nos. 11774401, and 11974397).


References

[1] Shen B., Zhang Y., Komijani Y., Nicklas M., Borth R., Wang A., Chen Y., Nie Z., Li R., Lu X., Lee H., Smidman M., Steglich F., Coleman P., Yuan H.. Nature, 2020, 579: 51-55 CrossRef PubMed ADS arXiv Google Scholar

[2] Steppke A., Kuchler R., Lausberg S., Lengyel E., Steinke L., Borth R., Luhmann T., Krellner C., Nicklas M., Geibel C., Steglich F., Brando M.. Science, 2013, 339: 933-936 CrossRef PubMed ADS Google Scholar

[3] Stockert O., Steglich F.. Annu. Rev. Condens. Matter Phys., 2011, 2: 79-99 CrossRef ADS Google Scholar

[4] Yang Y. F.. Rep. Prog. Phys., 2016, 79: 074501 CrossRef PubMed ADS arXiv Google Scholar

[5] Abrahams E., Wolfle P.. Proc. Natl. Acad. Sci. USA, 2012, 109: 3238-3242 CrossRef PubMed ADS Google Scholar

[6] Miyake K., Watanabe S.. J. Phys. Soc. Jpn., 2014, 83: 061006 CrossRef ADS arXiv Google Scholar

[7] Yang Y. F., Pines D., Lonzarich G.. Proc. Natl. Acad. Sci. USA, 2017, 114: 6250-6255 CrossRef PubMed ADS arXiv Google Scholar

[8] Ran S., Eckberg C., Ding Q. P., Furukawa Y., Metz T., Saha S. R., Liu I. L., Zic M., Kim H., Paglione J., Butch N. P.. Science, 2019, 365: 684-687 CrossRef PubMed ADS Google Scholar

[9] Liu Q., Shen B., Smidman M., Li R., Nie Z. Y., Xiao X. Y., Chen Y., Lee H., Yuan H. Q.. Sci. China-Phys. Mech. Astron., 2018, 61: 77411 CrossRef ADS arXiv Google Scholar

[10] Zhao H., Zhang J., Lyu M., Bachus S., Tokiwa Y., Gegenwart P., Zhang S., Cheng J., Yang Y. F., Chen G., Isikawa Y., Si Q., Steglich F., Sun P.. Nat. Phys.., 2019, 15: 1261-1266 CrossRef ADS arXiv Google Scholar

  • Figure 1

    (Color online) (a) Illustration of the Kondo lattice with coexisting localized $f$ moments and itinerant heavy $f$ quasiparticles, whose instabilities cause various competing ground states, reprinted from ref. [4], with permission from IOP Publishing. Typical phase diagrams include: (b) the conventional one as in CeCu$_2$Si$_2$; (c) a single QCP with coincident magnetic and delocalization transitions as in YbRh$_2$Si$_2$ and CeRh$_6$Ge$_4$; (d) a quantum critical phase at zero temperature between separated magnetic and delocalization transitions as in CePdAl. In the two-fluid theory [4], the $f$ electrons turn gradually itinerant with lowering temperature. In all phase diagrams, the solid line denotes the AFM or FM transition of localized $f$ component and the dashed line marks the upper boundary ($T_{\rm~L}$) of full delocalization of all $f$ electrons. The low-energy quantum dynamics around the QCPs is governed by the interplay of their associated fluctuations.

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号