References
[1]
Aminu
MD,
Nabavi
SA,
Rochelle
CA, et al.
A review of developments in carbon dioxide storage.
Appl Energy,
2017, 208: 1389-1419
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A review of developments in carbon dioxide storage&author=Aminu MD&author=Nabavi SA&author=Rochelle CA&publication_year=2017&journal=Appl Energy&volume=208&pages=1389-1419
[2]
Rahman
FA,
Aziz
MMA,
Saidur
R, et al.
Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future.
Renew Sustain Energy Rev,
2017, 71: 112-126
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future&author=Rahman FA&author=Aziz MMA&author=Saidur R&publication_year=2017&journal=Renew Sustain Energy Rev&volume=71&pages=112-126
[3]
Li
B,
Duan
Y,
Luebke
D, et al.
Advances in CO2 capture technology: A patent review.
Appl Energy,
2013, 102: 1439-1447
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Advances in CO2 capture technology: A patent review&author=Li B&author=Duan Y&author=Luebke D&publication_year=2013&journal=Appl Energy&volume=102&pages=1439-1447
[4]
Jiang
X,
Guan
D.
The global CO2 emissions growth after international crisis and the role of international trade.
Energy Policy,
2017, 109: 734-746
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The global CO2 emissions growth after international crisis and the role of international trade&author=Jiang X&author=Guan D&publication_year=2017&journal=Energy Policy&volume=109&pages=734-746
[5]
Saeidi
S,
Amin
NAS,
Rahimpour
MR.
Hydrogenation of CO2 to value-added products—A review and potential future developments.
J CO Utilization,
2014, 5: 66-81
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hydrogenation of CO2 to value-added products—A review and potential future developments&author=Saeidi S&author=Amin NAS&author=Rahimpour MR&publication_year=2014&journal=J CO Utilization&volume=5&pages=66-81
[6]
Goeppert
A,
Czaun
M,
Jones
JP, et al.
Recycling of carbon dioxide to methanol and derived products—closing the loop.
Chem Soc Rev,
2014, 43: 7995-8048
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Recycling of carbon dioxide to methanol and derived products—closing the loop&author=Goeppert A&author=Czaun M&author=Jones JP&publication_year=2014&journal=Chem Soc Rev&volume=43&pages=7995-8048
[7]
Aziz
MAA,
Jalil
AA,
Triwahyono
S, et al.
Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation.
Appl Catal B-Environ,
2014, 147: 359-368
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation&author=Aziz MAA&author=Jalil AA&author=Triwahyono S&publication_year=2014&journal=Appl Catal B-Environ&volume=147&pages=359-368
[8]
Guo
L,
Sun
J,
Ge
Q, et al.
Recent advances in direct catalytic hydrogenation of carbon dioxide to valuable C2+ hydrocarbons.
J Mater Chem A,
2018, 6: 23244-23262
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Recent advances in direct catalytic hydrogenation of carbon dioxide to valuable C2+ hydrocarbons&author=Guo L&author=Sun J&author=Ge Q&publication_year=2018&journal=J Mater Chem A&volume=6&pages=23244-23262
[9]
Hu
B,
Guild
C,
Suib
SL.
Thermal, electrochemical, and photochemical conversion of CO2 to fuels and value-added products.
J CO Utilization,
2013, 1: 18-27
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Thermal, electrochemical, and photochemical conversion of CO2 to fuels and value-added products&author=Hu B&author=Guild C&author=Suib SL&publication_year=2013&journal=J CO Utilization&volume=1&pages=18-27
[10]
Melaet
G,
Ralston
WT,
Li
CS, et al.
Evidence of highly active cobalt oxide catalyst for the Fischer–Tropsch synthesis and CO2 hydrogenation.
J Am Chem Soc,
2014, 136: 2260-2263
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Evidence of highly active cobalt oxide catalyst for the Fischer–Tropsch synthesis and CO2 hydrogenation&author=Melaet G&author=Ralston WT&author=Li CS&publication_year=2014&journal=J Am Chem Soc&volume=136&pages=2260-2263
[11]
Khodakov
AY,
Chu
W,
Fongarland
P.
Advances in the development of novel cobalt Fischer−Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels.
Chem Rev,
2007, 107: 1692-1744
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Advances in the development of novel cobalt Fischer−Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels&author=Khodakov AY&author=Chu W&author=Fongarland P&publication_year=2007&journal=Chem Rev&volume=107&pages=1692-1744
[12]
Goguet
A,
Meunier
FC,
Tibiletti
D, et al.
Spectrokinetic investigation of reverse water-gas-shift reaction intermediates over a Pt/CeO2 catalyst.
J Phys Chem B,
2004, 108: 20240-20246
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Spectrokinetic investigation of reverse water-gas-shift reaction intermediates over a Pt/CeO2 catalyst&author=Goguet A&author=Meunier FC&author=Tibiletti D&publication_year=2004&journal=J Phys Chem B&volume=108&pages=20240-20246
[13]
Kim
DH,
Han
SW,
Yoon
HS, et al.
Reverse water gas shift reaction catalyzed by Fe nanoparticles with high catalytic activity and stability.
J Industrial Eng Chem,
2015, 23: 67-71
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Reverse water gas shift reaction catalyzed by Fe nanoparticles with high catalytic activity and stability&author=Kim DH&author=Han SW&author=Yoon HS&publication_year=2015&journal=J Industrial Eng Chem&volume=23&pages=67-71
[14]
Dagle
RA,
Platon
A,
Palo
DR, et al.
PdZnAl catalysts for the reactions of water-gas-shift, methanol steam reforming, and reverse-water-gas-shift.
Appl Catal A-General,
2008, 342: 63-68
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=PdZnAl catalysts for the reactions of water-gas-shift, methanol steam reforming, and reverse-water-gas-shift&author=Dagle RA&author=Platon A&author=Palo DR&publication_year=2008&journal=Appl Catal A-General&volume=342&pages=63-68
[15]
Tsuchiya
K,
Huang
JD,
Tominaga
K.
Reverse water-gas shift reaction catalyzed by mononuclear Ru complexes.
ACS Catal,
2013, 3: 2865-2868
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Reverse water-gas shift reaction catalyzed by mononuclear Ru complexes&author=Tsuchiya K&author=Huang JD&author=Tominaga K&publication_year=2013&journal=ACS Catal&volume=3&pages=2865-2868
[16]
Xia
BY,
Wu
HB,
Li
N, et al.
One-pot synthesis of Pt-Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties.
Angew Chem Int Ed,
2015, 54: 3797-3801
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=One-pot synthesis of Pt-Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties&author=Xia BY&author=Wu HB&author=Li N&publication_year=2015&journal=Angew Chem Int Ed&volume=54&pages=3797-3801
[17]
Hong
W,
Wang
J,
Wang
E.
Dendritic Au/Pt and Au/PtCu nanowires with enhanced electrocatalytic activity for methanol electrooxidation.
Small,
2014, 10: 3262-3265
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dendritic Au/Pt and Au/PtCu nanowires with enhanced electrocatalytic activity for methanol electrooxidation&author=Hong W&author=Wang J&author=Wang E&publication_year=2014&journal=Small&volume=10&pages=3262-3265
[18]
Hong
W,
Shang
C,
Wang
J, et al.
Bimetallic PdPt nanowire networks with enhanced electrocatalytic activity for ethylene glycol and glycerol oxidation.
Energy Environ Sci,
2015, 8: 2910-2915
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bimetallic PdPt nanowire networks with enhanced electrocatalytic activity for ethylene glycol and glycerol oxidation&author=Hong W&author=Shang C&author=Wang J&publication_year=2015&journal=Energy Environ Sci&volume=8&pages=2910-2915
[19]
Sai Siddhardha
RS,
Kumar
MA,
Lakshminarayanan
V, et al.
Anti-fouling response of gold–carbon nanotubes composite for enhanced ethanol electrooxidation.
J Power Sources,
2014, 271: 305-311
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Anti-fouling response of gold–carbon nanotubes composite for enhanced ethanol electrooxidation&author=Sai Siddhardha RS&author=Kumar MA&author=Lakshminarayanan V&publication_year=2014&journal=J Power Sources&volume=271&pages=305-311
[20]
Zhao
GY,
Xu
CL,
Guo
DJ, et al.
Template preparation of Pt–Ru and Pt nanowire array electrodes on a Ti/Si substrate for methanol electro-oxidation.
J Power Sources,
2006, 162: 492-496
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Template preparation of Pt–Ru and Pt nanowire array electrodes on a Ti/Si substrate for methanol electro-oxidation&author=Zhao GY&author=Xu CL&author=Guo DJ&publication_year=2006&journal=J Power Sources&volume=162&pages=492-496
[21]
Zhu
C,
Guo
S,
Dong
S.
PdM (M = Pt, Au) bimetallic alloy nanowires with enhanced electrocatalytic activity for electro-oxidation of small molecules.
Adv Mater,
2012, 24: 2326-2331
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=PdM (M = Pt, Au) bimetallic alloy nanowires with enhanced electrocatalytic activity for electro-oxidation of small molecules&author=Zhu C&author=Guo S&author=Dong S&publication_year=2012&journal=Adv Mater&volume=24&pages=2326-2331
[22]
Qi
Y,
Bian
T,
Choi
SI, et al.
Kinetically controlled synthesis of Pt–Cu alloy concave nanocubes with high-index facets for methanol electro-oxidation.
Chem Commun,
2014, 50: 560-562
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kinetically controlled synthesis of Pt–Cu alloy concave nanocubes with high-index facets for methanol electro-oxidation&author=Qi Y&author=Bian T&author=Choi SI&publication_year=2014&journal=Chem Commun&volume=50&pages=560-562
[23]
Fu
X,
Zhao
Z,
Wan
C, et al.
Ultrathin wavy Rh nanowires as highly effective electrocatalysts for methanol oxidation reaction with ultrahigh ECSA.
Nano Res,
2019, 12: 211-215
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ultrathin wavy Rh nanowires as highly effective electrocatalysts for methanol oxidation reaction with ultrahigh ECSA&author=Fu X&author=Zhao Z&author=Wan C&publication_year=2019&journal=Nano Res&volume=12&pages=211-215
[24]
Chen
B,
Cheng
D,
Zhu
J.
Synthesis of PtCu nanowires in nonaqueous solvent with enhanced activity and stability for oxygen reduction reaction.
J Power Sources,
2014, 267: 380-387
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Synthesis of PtCu nanowires in nonaqueous solvent with enhanced activity and stability for oxygen reduction reaction&author=Chen B&author=Cheng D&author=Zhu J&publication_year=2014&journal=J Power Sources&volume=267&pages=380-387
[25]
Yu
M,
Wang
Z,
Hou
C, et al.
Nitrogen-doped Co3O4 mesoporous nanowire arrays as an additive-free air-cathode for flexible solid-state zinc-air batteries.
Adv Mater,
2017, 29: 1602868
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nitrogen-doped Co3O4 mesoporous nanowire arrays as an additive-free air-cathode for flexible solid-state zinc-air batteries&author=Yu M&author=Wang Z&author=Hou C&publication_year=2017&journal=Adv Mater&volume=29&pages=1602868
[26]
Bai
Y,
Dou
Y,
Xie
LH, et al.
Zr-based metal–organic frameworks: design, synthesis, structure, and applications.
Chem Soc Rev,
2016, 45: 2327-2367
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zr-based metal–organic frameworks: design, synthesis, structure, and applications&author=Bai Y&author=Dou Y&author=Xie LH&publication_year=2016&journal=Chem Soc Rev&volume=45&pages=2327-2367
[27]
Lustig
WP,
Mukherjee
S,
Rudd
ND, et al.
Metal–organic frameworks: functional luminescent and photonic materials for sensing applications.
Chem Soc Rev,
2017, 46: 3242-3285
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Metal–organic frameworks: functional luminescent and photonic materials for sensing applications&author=Lustig WP&author=Mukherjee S&author=Rudd ND&publication_year=2017&journal=Chem Soc Rev&volume=46&pages=3242-3285
[28]
Li
JR,
Sculley
J,
Zhou
HC.
Metal–organic frameworks for separations.
Chem Rev,
2012, 112: 869-932
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Metal–organic frameworks for separations&author=Li JR&author=Sculley J&author=Zhou HC&publication_year=2012&journal=Chem Rev&volume=112&pages=869-932
[29]
Huang
YB,
Liang
J,
Wang
XS, et al.
Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions.
Chem Soc Rev,
2017, 46: 126-157
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions&author=Huang YB&author=Liang J&author=Wang XS&publication_year=2017&journal=Chem Soc Rev&volume=46&pages=126-157
[30]
Zhu
Y,
Ciston
J,
Zheng
B, et al.
Unravelling surface and interfacial structures of a metal–organic framework by transmission electron microscopy.
Nat Mater,
2017, 16: 532-536
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Unravelling surface and interfacial structures of a metal–organic framework by transmission electron microscopy&author=Zhu Y&author=Ciston J&author=Zheng B&publication_year=2017&journal=Nat Mater&volume=16&pages=532-536
[31]
Furukawa
H,
Cordova
KE,
O'Keeffe
M, et al.
The chemistry and applications of metal-organic frameworks.
Science,
2013, 341: 1230444
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=The chemistry and applications of metal-organic frameworks&author=Furukawa H&author=Cordova KE&author=O'Keeffe M&publication_year=2013&journal=Science&volume=341&pages=1230444
[32]
Rowsell
JLC,
Yaghi
OM.
Metal–organic frameworks: a new class of porous materials.
Microporous Mesoporous Mater,
2004, 73: 3-14
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Metal–organic frameworks: a new class of porous materials&author=Rowsell JLC&author=Yaghi OM&publication_year=2004&journal=Microporous Mesoporous Mater&volume=73&pages=3-14
[33]
Liu
J,
Strachan
DM,
Thallapally
PK.
Enhanced noble gas adsorption in Ag@MOF-74Ni.
Chem Commun,
2014, 50: 466-468
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Enhanced noble gas adsorption in Ag@MOF-74Ni&author=Liu J&author=Strachan DM&author=Thallapally PK&publication_year=2014&journal=Chem Commun&volume=50&pages=466-468
[34]
Wang
X,
Xie
L,
Huang
KW, et al.
A rationally designed amino-borane complex in a metal organic framework: a novel reusable hydrogen storage and size-selective reduction material.
Chem Commun,
2015, 51: 7610-7613
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=A rationally designed amino-borane complex in a metal organic framework: a novel reusable hydrogen storage and size-selective reduction material&author=Wang X&author=Xie L&author=Huang KW&publication_year=2015&journal=Chem Commun&volume=51&pages=7610-7613
[35]
Adhikari
AK,
Lin
KS.
Improving CO2 adsorption capacities and CO2/N2 separation efficiencies of MOF-74(Ni, Co) by doping palladium-containing activated carbon.
Chem Eng J,
2016, 284: 1348-1360
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Improving CO2 adsorption capacities and CO2/N2 separation efficiencies of MOF-74(Ni, Co) by doping palladium-containing activated carbon&author=Adhikari AK&author=Lin KS&publication_year=2016&journal=Chem Eng J&volume=284&pages=1348-1360
[36]
Zhu
H,
Yang
X,
Cranston
ED, et al.
Flexible and porous nanocellulose aerogels with high loadings of metal-organic-framework particles for separations applications.
Adv Mater,
2016, 28: 7652-7657
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Flexible and porous nanocellulose aerogels with high loadings of metal-organic-framework particles for separations applications&author=Zhu H&author=Yang X&author=Cranston ED&publication_year=2016&journal=Adv Mater&volume=28&pages=7652-7657
[37]
Kreno
LE,
Leong
K,
Farha
OK, et al.
Metal–organic framework materials as chemical sensors.
Chem Rev,
2012, 112: 1105-1125
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Metal–organic framework materials as chemical sensors&author=Kreno LE&author=Leong K&author=Farha OK&publication_year=2012&journal=Chem Rev&volume=112&pages=1105-1125
[38]
Lee
JY,
Farha
OK,
Roberts
J, et al.
Metal–organic framework materials as catalysts.
Chem Soc Rev,
2009, 38: 1450-1459
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Metal–organic framework materials as catalysts&author=Lee JY&author=Farha OK&author=Roberts J&publication_year=2009&journal=Chem Soc Rev&volume=38&pages=1450-1459
[39]
Mondloch
JE,
Katz
MJ,
Isley III
WC, et al.
Destruction of chemical warfare agents using metal–organic frameworks.
Nat Mater,
2015, 14: 512-516
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Destruction of chemical warfare agents using metal–organic frameworks&author=Mondloch JE&author=Katz MJ&author=Isley III WC&publication_year=2015&journal=Nat Mater&volume=14&pages=512-516
[40]
Zhou
HC,
Long
JR,
Yaghi
OM.
Introduction to metal–organic frameworks.
Chem Rev,
2012, 112: 673-674
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Introduction to metal–organic frameworks&author=Zhou HC&author=Long JR&author=Yaghi OM&publication_year=2012&journal=Chem Rev&volume=112&pages=673-674
[41]
Wang
X,
Chen
W,
Zhang
L, et al.
Uncoordinated amine groups of metal–organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline.
J Am Chem Soc,
2017, 139: 9419-9422
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Uncoordinated amine groups of metal–organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline&author=Wang X&author=Chen W&author=Zhang L&publication_year=2017&journal=J Am Chem Soc&volume=139&pages=9419-9422
[42]
Zhao
C,
Dai
X,
Yao
T, et al.
Ionic exchange of metal–organic frameworks to access single nickel sites for efficient electroreduction of CO2.
J Am Chem Soc,
2017, 139: 8078-8081
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ionic exchange of metal–organic frameworks to access single nickel sites for efficient electroreduction of CO2&author=Zhao C&author=Dai X&author=Yao T&publication_year=2017&journal=J Am Chem Soc&volume=139&pages=8078-8081
[43]
Zhang
H,
Zhao
W,
Zou
M, et al.
3D, mutually embedded MOF@carbon nanotube hybrid networks for high-performance lithium-sulfur batteries.
Adv Energy Mater,
2019, 9: 1805764
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=3D, mutually embedded MOF@carbon nanotube hybrid networks for high-performance lithium-sulfur batteries&author=Zhang H&author=Zhao W&author=Zou M&publication_year=2019&journal=Adv Energy Mater&volume=9&pages=1805764
[44]
Zhang
W,
Wu
ZY,
Jiang
HL, et al.
Nanowire-directed templating synthesis of metal–organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis.
J Am Chem Soc,
2014, 136: 14385-14388
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nanowire-directed templating synthesis of metal–organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis&author=Zhang W&author=Wu ZY&author=Jiang HL&publication_year=2014&journal=J Am Chem Soc&volume=136&pages=14385-14388
[45]
Drobek
M,
Kim
JH,
Bechelany
M, et al.
MOF-based membrane encapsulated ZnO nanowires for enhanced gas sensor selectivity.
ACS Appl Mater Interfaces,
2016, 8: 8323-8328
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=MOF-based membrane encapsulated ZnO nanowires for enhanced gas sensor selectivity&author=Drobek M&author=Kim JH&author=Bechelany M&publication_year=2016&journal=ACS Appl Mater Interfaces&volume=8&pages=8323-8328
[46]
Zang
X,
Zhang
X,
Chang
Q, et al.
Metal-organic framework UiO-67-coated fiber for the solid-phase microextraction of nitrobenzene compounds from water.
J Sep Sci,
2016, 39: 2770-2776
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Metal-organic framework UiO-67-coated fiber for the solid-phase microextraction of nitrobenzene compounds from water&author=Zang X&author=Zhang X&author=Chang Q&publication_year=2016&journal=J Sep Sci&volume=39&pages=2770-2776
[47]
Hester
P,
Xu
S,
Liang
W, et al.
On thermal stability and catalytic reactivity of Zr-based metal–organic framework (UiO-67) encapsulated Pt catalysts.
J Catal,
2016, 340: 85-94
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=On thermal stability and catalytic reactivity of Zr-based metal–organic framework (UiO-67) encapsulated Pt catalysts&author=Hester P&author=Xu S&author=Liang W&publication_year=2016&journal=J Catal&volume=340&pages=85-94
[48]
Cavka
JH,
Jakobsen
S,
Olsbye
U, et al.
A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability.
J Am Chem Soc,
2008, 130: 13850-13851
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability&author=Cavka JH&author=Jakobsen S&author=Olsbye U&publication_year=2008&journal=J Am Chem Soc&volume=130&pages=13850-13851
[49]
Na
K,
Choi
KM,
Yaghi
OM, et al.
Metal nanocrystals embedded in single nanocrystals of MOFs give unusual selectivity as heterogeneous catalysts.
Nano Lett,
2014, 14: 5979-5983
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Metal nanocrystals embedded in single nanocrystals of MOFs give unusual selectivity as heterogeneous catalysts&author=Na K&author=Choi KM&author=Yaghi OM&publication_year=2014&journal=Nano Lett&volume=14&pages=5979-5983
[50]
Qian
HS,
Yu
SH,
Gong
JY, et al.
High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly(vinyl pyrrolidone)-assisted hydrothermal process.
Langmuir,
2006, 22: 3830-3835
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly(vinyl pyrrolidone)-assisted hydrothermal process&author=Qian HS&author=Yu SH&author=Gong JY&publication_year=2006&journal=Langmuir&volume=22&pages=3830-3835
[51]
Huang
Z,
Zhou
H,
Chen
Z, et al.
Facile synthesis of porous Pt botryoidal nanowires and their electrochemical properties.
Electrochim Acta,
2014, 147: 643-649
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Facile synthesis of porous Pt botryoidal nanowires and their electrochemical properties&author=Huang Z&author=Zhou H&author=Chen Z&publication_year=2014&journal=Electrochim Acta&volume=147&pages=643-649
[52]
Hong
W,
Wang
J,
Wang
E.
Facile synthesis of PtCu nanowires with enhanced electrocatalytic activity.
Nano Res,
2015, 8: 2308-2316
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Facile synthesis of PtCu nanowires with enhanced electrocatalytic activity&author=Hong W&author=Wang J&author=Wang E&publication_year=2015&journal=Nano Res&volume=8&pages=2308-2316
[53]
Cao
X,
Wang
N,
Jia
S, et al.
Detection of glucose based on bimetallic PtCu nanochains modified electrodes.
Anal Chem,
2013, 85: 5040-5046
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Detection of glucose based on bimetallic PtCu nanochains modified electrodes&author=Cao X&author=Wang N&author=Jia S&publication_year=2013&journal=Anal Chem&volume=85&pages=5040-5046
[54]
Mintsouli
I,
Georgieva
J,
Armyanov
S, et al.
Pt-Cu electrocatalysts for methanol oxidation prepared by partial galvanic replacement of Cu/carbon powder precursors.
Appl Catal B-Environ,
2013, 136-137: 160-167
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Pt-Cu electrocatalysts for methanol oxidation prepared by partial galvanic replacement of Cu/carbon powder precursors&author=Mintsouli I&author=Georgieva J&author=Armyanov S&publication_year=2013&journal=Appl Catal B-Environ&volume=136-137&pages=160-167
[55]
Fu
S,
Zhu
C,
Shi
Q, et al.
PtCu bimetallic alloy nanotubes with porous surface for oxygen reduction reaction.
RSC Adv,
2016, 6: 69233-69238
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=PtCu bimetallic alloy nanotubes with porous surface for oxygen reduction reaction&author=Fu S&author=Zhu C&author=Shi Q&publication_year=2016&journal=RSC Adv&volume=6&pages=69233-69238
[56]
Su
L,
Shrestha
S,
Zhang
Z, et al.
Platinum–copper nanotube electrocatalyst with enhanced activity and durability for oxygen reduction reactions.
J Mater Chem A,
2013, 1: 12293-12301
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Platinum–copper nanotube electrocatalyst with enhanced activity and durability for oxygen reduction reactions&author=Su L&author=Shrestha S&author=Zhang Z&publication_year=2013&journal=J Mater Chem A&volume=1&pages=12293-12301
[57]
Xu
H,
Li
Y,
Luo
X, et al.
Monodispersed gold nanoparticles supported on a zirconium-based porous metal–organic framework and their high catalytic ability for the reverse water–gas shift reaction.
Chem Commun,
2017, 53: 7953-7956
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Monodispersed gold nanoparticles supported on a zirconium-based porous metal–organic framework and their high catalytic ability for the reverse water–gas shift reaction&author=Xu H&author=Li Y&author=Luo X&publication_year=2017&journal=Chem Commun&volume=53&pages=7953-7956
[58]
Zhao
Y,
Zhang
Q,
Li
Y, et al.
Large-scale synthesis of monodisperse UiO-66 crystals with tunable sizes and missing linker defects via acid/base Co-modulation.
ACS Appl Mater Interfaces,
2017, 9: 15079-15085
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Large-scale synthesis of monodisperse UiO-66 crystals with tunable sizes and missing linker defects via acid/base Co-modulation&author=Zhao Y&author=Zhang Q&author=Li Y&publication_year=2017&journal=ACS Appl Mater Interfaces&volume=9&pages=15079-15085
[59]
Masoomi
MY,
Beheshti
S,
Morsali
A.
Shape control of Zn(II) metal–organic frameworks by modulation synthesis and their morphology-dependent catalytic performance.
Cryst Growth Des,
2015, 15: 2533-2538
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shape control of Zn(II) metal–organic frameworks by modulation synthesis and their morphology-dependent catalytic performance&author=Masoomi MY&author=Beheshti S&author=Morsali A&publication_year=2015&journal=Cryst Growth Des&volume=15&pages=2533-2538
[60]
Cai
X,
Lin
J,
Pang
M.
Facile synthesis of highly uniform Fe-MIL-88B particles.
Cryst Growth Des,
2016, 16: 3565-3568
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Facile synthesis of highly uniform Fe-MIL-88B particles&author=Cai X&author=Lin J&author=Pang M&publication_year=2016&journal=Cryst Growth Des&volume=16&pages=3565-3568
[61]
Lu
G,
Li
S,
Guo
Z, et al.
Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation.
Nat Chem,
2012, 4: 310-316
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation&author=Lu G&author=Li S&author=Guo Z&publication_year=2012&journal=Nat Chem&volume=4&pages=310-316
[62]
Keturakis
CJ,
Zhu
M,
Gibson
EK, et al.
Dynamics of CrO3–Fe2O3 catalysts during the high-temperature water-gas shift reaction: molecular structures and reactivity.
ACS Catal,
2016, 6: 4786-4798
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dynamics of CrO3–Fe2O3 catalysts during the high-temperature water-gas shift reaction: molecular structures and reactivity&author=Keturakis CJ&author=Zhu M&author=Gibson EK&publication_year=2016&journal=ACS Catal&volume=6&pages=4786-4798
[63]
Cheng
Z,
Sherman
BJ,
Lo
CS.
Carbon dioxide activation and dissociation on ceria (110): A density functional theory study.
J Chem Phys,
2013, 138: 014702
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Carbon dioxide activation and dissociation on ceria (110): A density functional theory study&author=Cheng Z&author=Sherman BJ&author=Lo CS&publication_year=2013&journal=J Chem Phys&volume=138&pages=014702
[64]
Daza
YA,
Kuhn
JN.
CO2 conversion by reverse water gas shift catalysis: comparison of catalysts, mechanisms and their consequences for CO2 conversion to liquid fuels.
RSC Adv,
2016, 6: 49675-49691
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=CO2 conversion by reverse water gas shift catalysis: comparison of catalysts, mechanisms and their consequences for CO2 conversion to liquid fuels&author=Daza YA&author=Kuhn JN&publication_year=2016&journal=RSC Adv&volume=6&pages=49675-49691
[65]
Du
C,
Chen
M,
Wang
W, et al.
Platinum-based intermetallic nanotubes with a core–shell structure as highly active and durable catalysts for fuel cell applications.
J Power Sources,
2013, 240: 630-635
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Platinum-based intermetallic nanotubes with a core–shell structure as highly active and durable catalysts for fuel cell applications&author=Du C&author=Chen M&author=Wang W&publication_year=2013&journal=J Power Sources&volume=240&pages=630-635
[66]
Jiang
Y,
Jia
Y,
Zhang
J, et al.
Underpotential deposition-induced synthesis of composition-tunable Pt-Cu nanocrystals and their catalytic properties.
Chem Eur J,
2013, 19: 3119-3124
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Underpotential deposition-induced synthesis of composition-tunable Pt-Cu nanocrystals and their catalytic properties&author=Jiang Y&author=Jia Y&author=Zhang J&publication_year=2013&journal=Chem Eur J&volume=19&pages=3119-3124
[67]
Xu
D,
Liu
Z,
Yang
H, et al.
Solution-based evolution and enhanced methanol oxidation activity of monodisperse platinum-copper nanocubes.
Angew Chem Int Ed,
2009, 48: 4217-4221
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Solution-based evolution and enhanced methanol oxidation activity of monodisperse platinum-copper nanocubes&author=Xu D&author=Liu Z&author=Yang H&publication_year=2009&journal=Angew Chem Int Ed&volume=48&pages=4217-4221
[68]
Yu
X,
Wang
D,
Peng
Q, et al.
Pt-M (M=Cu, Co, Ni, Fe) nanocrystals: from small nanoparticles to wormlike nanowires by oriented attachment.
Chem Eur J,
2013, 19: 233-239
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Pt-M (M=Cu, Co, Ni, Fe) nanocrystals: from small nanoparticles to wormlike nanowires by oriented attachment&author=Yu X&author=Wang D&author=Peng Q&publication_year=2013&journal=Chem Eur J&volume=19&pages=233-239
[69]
Gutterød
ES,
Øien-Ødegaard
S,
Bossers
K, et al.
CO2 hydrogenation over Pt-containing UiO-67 Zr-MOFs—the base case.
Ind Eng Chem Res,
2017, 56: 13206-13218
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=CO2 hydrogenation over Pt-containing UiO-67 Zr-MOFs—the base case&author=Gutterød ES&author=Øien-Ødegaard S&author=Bossers K&publication_year=2017&journal=Ind Eng Chem Res&volume=56&pages=13206-13218
[70]
Zhao
X,
Xu
H,
Wang
XX, et al.
Monodisperse metal–organic framework nanospheres with encapsulated core–shell nanoparticles Pt/Au@Pd@{Co2(oba)4(3-bpdh)2}4H2O for the highly selective conversion of CO2 to CO.
ACS Appl Mater Interfaces,
2018, 10: 15096-15103
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Monodisperse metal–organic framework nanospheres with encapsulated core–shell nanoparticles Pt/Au@Pd@{Co2(oba)4(3-bpdh)2}4H2O for the highly selective conversion of CO2 to CO&author=Zhao X&author=Xu H&author=Wang XX&publication_year=2018&journal=ACS Appl Mater Interfaces&volume=10&pages=15096-15103
[71]
Chen
CS,
Wu
JH,
Lai
TW.
Carbon dioxide hydrogenation on Cu nanoparticles.
J Phys Chem C,
2010, 114: 15021-15028
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Carbon dioxide hydrogenation on Cu nanoparticles&author=Chen CS&author=Wu JH&author=Lai TW&publication_year=2010&journal=J Phys Chem C&volume=114&pages=15021-15028
[72]
Han
Y,
Xu
H,
Su
Y, et al.
Noble metal (Pt, Au@Pd) nanoparticles supported on metal organic framework (MOF-74) nanoshuttles as high-selectivity CO2 conversion catalysts.
J Catal,
2019, 370: 70-78
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Noble metal (Pt, Au@Pd) nanoparticles supported on metal organic framework (MOF-74) nanoshuttles as high-selectivity CO2 conversion catalysts&author=Han Y&author=Xu H&author=Su Y&publication_year=2019&journal=J Catal&volume=370&pages=70-78
[73]
Andersson
MP,
Abild-Pedersen
F,
Remediakis
IN, et al.
Structure sensitivity of the methanation reaction: H2-induced CO dissociation on nickel surfaces.
J Catal,
2008, 255: 6-19
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Structure sensitivity of the methanation reaction: H2-induced CO dissociation on nickel surfaces&author=Andersson MP&author=Abild-Pedersen F&author=Remediakis IN&publication_year=2008&journal=J Catal&volume=255&pages=6-19