SCIENTIA SINICA Chimica, Volume 42 , Issue 4 : 525-547(2012) https://doi.org/10.1360/032011-828

Some thoughts about controllable assembly (I) — From catalysis to cassemblysis

More info
  • AcceptedDec 23, 2011
  • PublishedMar 29, 2012



[1] Service RF. How far can we push chemical self-assembly. Science, 2005, 309: 95-95. CrossRef Google Scholar

[2] Klein ML, Shinoda W. Large-scale molecular dynamics simulations of self-assembling systems. Science, 2008, 321: 798-800. CrossRef Google Scholar

[3] Stone AJ. Intermolecular potentials. Science, 2008, 321: 787-789. CrossRef Google Scholar

[4] Ariga K, Hill JP, Lee MV, Vinu A, Charvet R, Acharya S. Challenges and breakthroughs in recent research on self-assembly. Sci Technol Adv Mater, 2008, 9: 1-96. Google Scholar

[5] Alivisatos AP, Barbara PF, Castleman AW, Chang J, Dixon DA, Klein ML, McLendon GL, Miller JS, Ratner MA, Rossky PJ, Stupp SI, Thompson ME. From molecules to materials: Current trends and future directions. Adv Mater, 1998, 10: 1297-1336. CrossRef Google Scholar

[6] Lehn JM. Toward self-organization and complex matter. Science, 2002, 295: 2400-2403. CrossRef Google Scholar

[7] Collier CP, Wong EW, Belohradsky M, Raymo FM, Stoddart JF, Kuekes PJ, Williams RS, Heath JR. Electronically configurable molecular-based logic gates. Science, 1999, 285: 391-394. CrossRef Google Scholar

[8] Whitesides GM, Boncheva M. Beyond molecules: Self-assembly of mesoscopic and macroscopic components. Proc Natl Acad Sci USA, 2002, 99: 4769-4774. CrossRef Google Scholar

[9] Seeman NC. DNA in a material world. Nature, 2003, 421: 427-431. CrossRef Google Scholar

[10] Beer PD, Gale PA. Anion recognition and sensing: The state of the art and future perspectives. Angew Chem Int Ed, 2001, 40: 486-516. CrossRef Google Scholar

[11] Chandler D. Interfaces and the driving force of hydrophobic assembly. Nature, 2005, 437: 640-647. CrossRef Google Scholar

[12] Dervan PB. Molecular recognition of DNA by small molecules. Bioorg Med Chem, 2001, 9: 2215-2235. CrossRef Google Scholar

[13] Northrop BH, Zheng Y-R, Chi K-W, Stang PJ. Self-organization in coordination-driven self-assembly. Acc Chem Res, 2009, 42: 1554-1563. CrossRef Google Scholar

[14] Li SS, Northrop BH, Yuan QH, Wan LJ, Stang PJ. Surface confined metallosupramolecular architectures: Formation and scanning tunneling microscopy characterization. Acc Chem Res, 2009, 42: 249-259. CrossRef Google Scholar

[15] Cornelissen J, Rowan AE, Nolte RJM, Sommerdijk N. Chiral architectures from macromolecular building blocks. Chem Rev, 2001, 101: 4039-4070. CrossRef Google Scholar

[16] Bosman AW, Janssen HM, Meijer EW. About dendrimers: Structure, physical properties, and applications. Chem Rev, 1999, 99: 1665-1688. CrossRef Google Scholar

[17] Kinbara K, Aida T. Toward intelligent molecular machines: Directed motions of biological and artificial molecules and assemblies. Chem Rev, 2005, 105: 1377-1400. CrossRef Google Scholar

[18] Kay ER, Leigh DA, Zerbetto F. Synthetic molecular motors and mechanical machines. Angew Chem Int Ed, 2007, 46: 72-191. CrossRef Google Scholar

[19] 张希, 王朝, 王治强. 超两亲分子: 可控组装与解组装. 中国科学: 化学, 2011, 41: 216-220. Google Scholar

[20] 梁清, 官冰, 江明. 两亲性杯芳烃的超分子自组装. 化学进展, 2010, 22: 388-399. Google Scholar

[21] 马余强. 软物质的自组装. 物理学进展, 2002, 22: 73-98. Google Scholar

[22] 毛晓波, 王晨轩, 刘磊, 马晓晶, 牛琳, 杨延莲, 王琛. 物理化学学报, 2010, 26: 850-861. Google Scholar

[23] 张先恩. 科学通报, 2009, 54: 2682-2690. Google Scholar

[24] Pelesko JA. Self Assembly: The Science of Things that Put Themselves Together. Boca Raton: Taylor & Francis, 2007. Google Scholar

[25] Lee YS. Self-assembly and Nanotechnology: A Force Balance Approach. Hoboken: Wiley, 2008. CrossRef Google Scholar

[26] 江明, A. 爱森伯格, 刘国军, 张希等. 大分子自组装. 北京: 科学出版社, 2006. Google Scholar

[27] Wöhler F. Ueber künstliche bildung des harnstoffs. Ann Phys-berlin, 1828, 88: 253-256. Google Scholar

[28] Ertl G, Knözinger H, Weitkamp J. Handbook of Heterogeneous Catalysis. Weinheim: VCH, 1997. Google Scholar

[29] Thomas JM, Thomas WJ. Principles and Practice of Heterogeneous Catalysis. Weinheim: VCH, 1997. Google Scholar

[30] Somorjai GA. Introduction to Surface Chemistry and Catalysis. New York: Wiley, 1994. Google Scholar

[31] 吴越. 催化化学. 北京: 科学出版社, 1990. CrossRef Google Scholar

[32] 吴越, 杨向光. 现代催化原理. 北京: 科学出版社, 2005. CrossRef Google Scholar

[33] Ruokolainen J, Makinen R, Torkkeli M, Makela T, Serimaa R, ten Brinke G, Ikkala O. Switching supramolecular polymeric materials with multiple length scales. Science, 1998, 280: 557-560. CrossRef Google Scholar

[34] Duan HW, Chen DY, Jiang M, Gan WJ, Li SJ, Wang M, Gong J. Self-assembly of unlike homopolymers into hollow spheres in nonselective solvent. J Am Chem Soc, 2001, 123: 12097-12098. CrossRef Google Scholar

[35] Park SY, Lytton-Jean AKR, Lee B, Weigand S, Schatz GC, Mirkin CA. DNA-programmable nanoparticle crystallization. Nature, 2008, 451: 553-556. CrossRef Google Scholar

[36] Nikitin MP, Zdobnova TA, Lukash SV, Stremovskiy OA, Deyev SM. Protein-assisted self-assembly of multifunctional nanoparticles. Proc Natl Acad Sci USA, 2010, 107: 5827-5832. CrossRef Google Scholar

[37] Yin YD, Lu Y, Gates B, Xia YN. Template-assisted self-assembly: A practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures. J Am Chem Soc, 2001, 123: 8718-8729. CrossRef Google Scholar

[38] Cheng JY, Ross CA, Smith HI, Thomas EL. Templated self-assembly of block copolymers: Top-down helps bottom-up. Adv Mater, 2006, 18: 2505-2521. CrossRef Google Scholar

[39] Wan Y, Zhao DY. On the controllable soft-templating approach to mesoporous silicates. Chem Rev, 2007, 107: 2821-2860. CrossRef Google Scholar

[40] Hurst SJ, Payne EK, Qin LD, Mirkin CA. Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods. Angew Chem Int Ed, 2006, 45: 2672-2692. CrossRef Google Scholar

[41] Zhang FC, Zhang F, Su HN, Li H, Zhang Y, Hu J. Mechanical manipulation assisted self-assembly to achieve defect repair and guided epitaxial growth of individual peptide nanofilaments. Acs Nano, 2010, 4: 5791-5796. CrossRef Google Scholar

[42] O'Riordan A, Delaney P, Redmond G. Field configured assembly: Programmed manipulation and self-assembly at the mesoscale. Nano Lett, 2004, 4: 761-765. CrossRef Google Scholar

[43] Cui H, Pashuck ET, Velichko YS, Weigand SJ, Cheetham AG, Newcomb CJ, Stupp SI. Spontaneous and X-ray-triggered crystallization at long range in self-assembling filament networks. Science, 2010, 327: 555-559. CrossRef Google Scholar

[44] Zheng Z, Gao K, Luo Y, Li D, Meng Q, Wang Y, Zhangt D. Rapidly infrared-assisted cooperatively self-assembled highly ordered multiscale porous materials. J Am Chem Soc, 2008, 130: 9785-9789. CrossRef Google Scholar

[45] Wang J, Chen QW, Zeng C, Hou BY. Magnetic-field-induced growth of single-crystalline Fe3O4 nanowires. Adv Mater, 2004, 16: 137-140. CrossRef Google Scholar

[46] Kim BG, Kim MS, Kim J. Ultrasonic-assisted nanodimensional self-assembly of poly-3-hexylthiophene for organic photovoltaic cells. Acs Nano, 2010, 4: 2160-2166. CrossRef Google Scholar

[47] Lu YF, Fan HY, Stump A, Ward TL, Rieker T, Brinker CJ. Aerosol-assisted self-assembly of mesostructured spherical nanoparticles. Nature, 1999, 398: 223-226. CrossRef Google Scholar

[48] Wang Y, Li W, Zhou S, Kong D, Yang H, Wu L. Mn(12) single-molecule magnet aggregates as magnetic resonance imaging contrast agents. Chem Commun, 2011, 3541-3543. Google Scholar

[49] Putz KW, Compton OC, Palmeri MJ, Nguyen ST, Brinson LC. High-nanofiller-content graphene oxide-polymer nanocomposites via vacuum-assisted self-assembly. Adv Funct Mater, 2010, 20: 3322-3329. CrossRef Google Scholar

[50] Lim X, Foo HWG, Chia GH, Sow C-H. Capillarity-assisted assembly of carbon nanotube microstructures with organized initiations. Acs Nano, 2010, 4: 1067-1075. CrossRef Google Scholar

[51] Yeon WC, Kannan B, Wohland T, Ng V. Colloidal crystals from surface-tension-assisted self-assembly: A novel matrix for single-molecule experiments. Langmuir, 2008, 24: 12142-12149. CrossRef Google Scholar

[52] Shiozawa H, Chia BCS, Davies NL, Zerella R, Williams DH. Cooperative binding interactions of glycopeptide antibiotics. J Am Chem Soc, 2002, 124: 3914-3919. CrossRef Google Scholar

[53] Prins LJ, De Jong F, Timmerman P, Reinhoudt DN. An enantiomerically pure hydrogen-bonded assembly. Nature, 2000, 408: 181-184. CrossRef Google Scholar

[54] Gold L. Posttranscriptional regulatory mechanisms in Escherichia coli. Annu Rev Biochem, 1988, 57: 199-233. CrossRef Google Scholar

[55] Laursen BS, Sorensen HP, Mortensen KK, Sperling-Petersen HU. Initiation of protein synthesis in bacteria. Microbiol Mol Biol R, 2005, 69: 101-123. CrossRef Google Scholar

[56] Antoun A, Pavlov MY, Lovmar M, Ehrenberg M. How initiation factors tune the rate of initiation of protein synthesis in bacteria. Embo J, 2006, 25: 2539-2550. CrossRef Google Scholar

[57] Gualerzi CO, Fabbretti A, Brandi L, Milon P, Pon CL. Role of the initiation factors in mRNA start site selection and fMet-tRNA recruitment by bacterial ribosomes. Israel J Chem, 2010, 50: 80-94. CrossRef Google Scholar

[58] Bolsover SR. Cell biology: A Short Course. Hoboken: Wiley, 2004. CrossRef Google Scholar

[59] Cordier P, Tournilhac F, Soulie-Ziakovic C, Leibler L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature, 2008, 451: 977-980. CrossRef Google Scholar

[60] O'Sullivan MC, Sprafke JK, Kondratuk DV, Rinfray C, Claridge TDW, Saywell A, Blunt MO, O'Shea JN, Beton PH, Malfois M, Anderson HL. Vernier templating and synthesis of a 12-porphyrin nano-ring. Nature, 2011, 469: 72-75. CrossRef Google Scholar

[61] Popa MP, McKelvey TA, Hempel J, Hendrix RW. Bacteriophage HK97 structure: Wholesale covalent cross-linking between the major head shell subunits. J Virol, 1991, 65: 3227-37. Google Scholar

[62] Duda RL, Hempel J, Michel H, Shabanowitz J, Hunt D, Hendrix RW. Structural transitions during bacteriophage HK97 head assembly. J Mol Biol, 1995, 247: 618-635. Google Scholar

[63] Wikoff WR, Liljas L, Duda RL, Tsuruta H, Hendrix RW, Johnson JE. Topologically linked protein rings in the bacteriophage HK97 capsid. Science, 2000, 289: 2129-2133. CrossRef Google Scholar

[64] Dierkes LE, Peebles CL, Firek BA, Hendrix RW, Duda RL. Mutational analysis of a conserved glutamic acid required for self-catalyzed cross-linking of bacteriophage HK97 capsids. J Virol, 2009, 83: 2088-2098. CrossRef Google Scholar

[65] Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science, 2001, 294: 1684-1688. CrossRef Google Scholar

[66] Ozbas B, Kretsinger J, Rajagopal K, Schneider JP, Pochan DJ. Salt-triggered peptide folding and consequent self-assembly into hydrogels with tunable modulus. Macromolecules, 2004, 37: 7331-7337. CrossRef Google Scholar

[67] Lauceri R, Raudino A, Scolaro LM, Micali N, Purrello R. From achiral porphyrins to template-imprinted chiral aggregates and further. Self-replication of chiral memory from scratch. J Am Chem Soc, 2002, 124: 894-895. CrossRef Google Scholar

[68] Ulman A. Formation and structure of self-assembled monolayers. Chem Rev, 1996, 96: 1533-1554. CrossRef Google Scholar

[69] Love J, Estroff L, Kriebel J, Nuzzo R, Whitesides G. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev, 2005, 105: 1103-1170. CrossRef Google Scholar

[70] Wu C, Niu AZ, Leung LM, Lam TS. Preparation of narrowly distributed stable and soluble polyacetylene block copolymer nanoparticles. J Am Chem Soc, 1999, 121: 1954-1955. CrossRef Google Scholar

[71] Wang YP, Ma N, Wang ZQ, Zhang X. Photocontrolled reversible supramolecular assemblies of an azobenzene-containing surfactant with alpha-cyclodextrin. Angew Chem Int Ed, 2007, 46: 2823-2826. CrossRef Google Scholar

[72] Asakawa M, Ashton PR, Balzani V, Credi A, Mattersteig G, Matthews OA, Montalti M, Spencer N, Stoddart JF, Venturi M. Electrochemically induced molecular motions in pseudorotaxanes: A case of dual-mode (oxidative and reductive) dethreading. Chem Eur J, 1997, 3: 1992-1996. CrossRef Google Scholar

[73] Williams RJ, Smith AM, Collins R, Hodson N, Das AK, Ulijn RV. Enzyme-assisted self-assembly under thermodynamic control. Nature Nanotech, 2009, 4: 19-24. CrossRef Google Scholar

[74] Bukau B, Horwich AL. The Hsp70 and Hsp60 chaperone machines. Cell, 1998, 92: 351-366. CrossRef Google Scholar

[75] 王志珍. 蛋白质折叠和分子伴侣. 生物学通报, 2004, 39: 1-6. Google Scholar

[76] Dobson CM. Protein folding and misfolding. Nature, 2003, 426: 884-890. CrossRef Google Scholar

[77] Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature, 2008, 451: 1069-1075. CrossRef Google Scholar

[78] Goldschmidt L, Teng PK, Riek R, Eisenberg D. Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc Natl Acad Sci USA, 2010, 107: 3487-3492. CrossRef Google Scholar

[79] Ma J, Yee A, Brewer HB Jr, Das S, Potter H. Amyloid-associated proteins alpha-1-antichymotrypsin and Apolipoprotein E promote assembly of Alzheimer beta-protein into filaments. Nature (London), 1994, 372: 92-94. CrossRef Google Scholar

[80] Prusiner SB. Prions. Proc Natl Acad Sci USA, 1998, 95: 13363-13383. CrossRef Google Scholar

[81] Rozema D; Gellman SH. Artificial chaperone-assisted refolding of denatured-reduced lysozyme: Modulation of the competition between renaturation and aggregation. Biochemistry, 1996, 35: 15760-15771. CrossRef Google Scholar

[82] Irie T; Uekama K. Cyclodextrins in peptide and protein delivery. Adv Drug Deliver Rev, 1999, 36: 101-123. CrossRef Google Scholar

[83] Takahashi H; Sawada S; Akiyoshi K. Amphiphilic polysaccharide nanoballs: A new building block for nanogel biomedical engineering and artificial chaperones. Acs Nano, 2011, 5: 337-345. CrossRef Google Scholar

[84] Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA, O'Mahony J, Whitcombe MJ. Molecular imprinting science and technology: A survey of the literature for the years up to and including 2003. J Mol Recognit, 2006, 19: 106-180. CrossRef Google Scholar

[85] Song RQ, Cölfen H. Mesocrystals-ordered nanoparticle superstructures. Adv Mater, 2010, 22: 1301-1330. CrossRef Google Scholar

[86] Li XD, Chang WC, Chao YJ, Wang RZ, Chang M. Nanoscale structural and mechanical characterization of a natural nanocomposite material: The shell of red abalone. Nano Lett, 2004, 4: 613-617. CrossRef Google Scholar

[87] Zhuang JQ, Wu HM, Yang YA, Cao YC. Supercrystalline colloidal particles from artificial atoms. J Am Chem Soc, 2007, 129: 14166-14167. CrossRef Google Scholar

[88] Walcarius A, Sibottier E, Etienne M, Ghanbaja J. Electrochemically assisted self-assembly of mesoporous silica thin films. Nat Mater, 2007, 6: 602-608. CrossRef Google Scholar

[89] Chen SF, Zhu JH, Jiang J, Cai GB, Yu SH. Polymer-controlled crystallization of unique mineral superstructures. Adv Mater, 2010, 22: 540-545. CrossRef Google Scholar

[90] Xie S, Zhou X, Han X, Kuang Q, Jin M, Jiang Y, Xie Z, Zheng L. Supercrystals from crystallization of octahedral MnO nanocrystals. J Phys Chem C, 2009, 113: 19107-19111. CrossRef Google Scholar

[91] 由德林. 酶工程原理. 北京: 科学出版社, 2011. CrossRef Google Scholar

[92] 郑惠平, 郭勇, 潘力. 酶学(第二版). 北京: 科学出版社, 2009. Google Scholar

[93] 马兰戈尼 著, 赵裕蓉, 张鹏 译. 酶催化动力学: 方法与应用. 北京: 化学工业出版社, 2007. Google Scholar

[94] 哈肯 著, 凌复华 译. 协同学: 大自然构成的奥秘. 上海: 上海译文出版社, 2006. Google Scholar

[95] Witten TA. Insights from soft condensed matter. Rev Mod Phys, 1999, 71: 367-373. CrossRef Google Scholar

[96] 陆坤权, 刘寄星. 软物质物理学导论. 北京: 北京大学出版社, 2005. CrossRef Google Scholar

[97] Lindstrom B, Pettersson LJ. A brief history of catalysis. Cattech, 2003, 7: 130-138. CrossRef Google Scholar