References
[1]
Service RF. How far can we push chemical self-assembly. Science, 2005, 309: 95-95.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Service RF. How far can we push chemical self-assembly. Science, 2005, 309: 95-95&
[2]
Klein ML, Shinoda W. Large-scale molecular dynamics simulations of self-assembling systems. Science, 2008, 321: 798-800.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Klein ML, Shinoda W. Large-scale molecular dynamics simulations of self-assembling systems. Science, 2008, 321: 798-800&
[3]
Stone AJ. Intermolecular potentials. Science, 2008, 321: 787-789.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stone AJ. Intermolecular potentials. Science, 2008, 321: 787-789&
[4]
Ariga K, Hill JP, Lee MV, Vinu A, Charvet R, Acharya S. Challenges and breakthroughs in recent research on self-assembly. Sci Technol Adv Mater, 2008, 9: 1-96.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ariga K, Hill JP, Lee MV, Vinu A, Charvet R, Acharya S. Challenges and breakthroughs in recent research on self-assembly. Sci Technol Adv Mater, 2008, 9: 1-96&
[5]
Alivisatos AP, Barbara PF, Castleman AW, Chang J, Dixon DA, Klein ML, McLendon GL, Miller JS, Ratner MA, Rossky PJ, Stupp SI, Thompson ME. From molecules to materials: Current trends and future directions. Adv Mater, 1998, 10: 1297-1336.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Alivisatos AP, Barbara PF, Castleman AW, Chang J, Dixon DA, Klein ML, McLendon GL, Miller JS, Ratner MA, Rossky PJ, Stupp SI, Thompson ME. From molecules to materials: Current trends and future directions. Adv Mater, 1998, 10: 1297-1336&
[6]
Lehn JM. Toward self-organization and complex matter. Science, 2002, 295: 2400-2403.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lehn JM. Toward self-organization and complex matter. Science, 2002, 295: 2400-2403&
[7]
Collier CP, Wong EW, Belohradsky M, Raymo FM, Stoddart JF, Kuekes PJ, Williams RS, Heath JR. Electronically configurable molecular-based logic gates. Science, 1999, 285: 391-394.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Collier CP, Wong EW, Belohradsky M, Raymo FM, Stoddart JF, Kuekes PJ, Williams RS, Heath JR. Electronically configurable molecular-based logic gates. Science, 1999, 285: 391-394&
[8]
Whitesides GM, Boncheva M. Beyond molecules: Self-assembly of mesoscopic and macroscopic components. Proc Natl Acad Sci USA, 2002, 99: 4769-4774.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Whitesides GM, Boncheva M. Beyond molecules: Self-assembly of mesoscopic and macroscopic components. Proc Natl Acad Sci USA, 2002, 99: 4769-4774&
[9]
Seeman NC. DNA in a material world. Nature, 2003, 421: 427-431.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Seeman NC. DNA in a material world. Nature, 2003, 421: 427-431&
[10]
Beer PD, Gale PA. Anion recognition and sensing: The state of the art and future perspectives. Angew Chem Int Ed, 2001, 40: 486-516.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Beer PD, Gale PA. Anion recognition and sensing: The state of the art and future perspectives. Angew Chem Int Ed, 2001, 40: 486-516&
[11]
Chandler D. Interfaces and the driving force of hydrophobic assembly. Nature, 2005, 437: 640-647.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chandler D. Interfaces and the driving force of hydrophobic assembly. Nature, 2005, 437: 640-647&
[12]
Dervan PB. Molecular recognition of DNA by small molecules. Bioorg Med Chem, 2001, 9: 2215-2235.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dervan PB. Molecular recognition of DNA by small molecules. Bioorg Med Chem, 2001, 9: 2215-2235&
[13]
Northrop BH, Zheng Y-R, Chi K-W, Stang PJ. Self-organization in coordination-driven self-assembly. Acc Chem Res, 2009, 42: 1554-1563.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Northrop BH, Zheng Y-R, Chi K-W, Stang PJ. Self-organization in coordination-driven self-assembly. Acc Chem Res, 2009, 42: 1554-1563&
[14]
Li SS, Northrop BH, Yuan QH, Wan LJ, Stang PJ. Surface confined metallosupramolecular architectures: Formation and scanning tunneling microscopy characterization. Acc Chem Res, 2009, 42: 249-259.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li SS, Northrop BH, Yuan QH, Wan LJ, Stang PJ. Surface confined metallosupramolecular architectures: Formation and scanning tunneling microscopy characterization. Acc Chem Res, 2009, 42: 249-259&
[15]
Cornelissen J, Rowan AE, Nolte RJM, Sommerdijk N. Chiral architectures from macromolecular building blocks. Chem Rev, 2001, 101: 4039-4070.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cornelissen J, Rowan AE, Nolte RJM, Sommerdijk N. Chiral architectures from macromolecular building blocks. Chem Rev, 2001, 101: 4039-4070&
[16]
Bosman AW, Janssen HM, Meijer EW. About dendrimers: Structure, physical properties, and applications. Chem Rev, 1999, 99: 1665-1688.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bosman AW, Janssen HM, Meijer EW. About dendrimers: Structure, physical properties, and applications. Chem Rev, 1999, 99: 1665-1688&
[17]
Kinbara K, Aida T. Toward intelligent molecular machines: Directed motions of biological and artificial molecules and assemblies. Chem Rev, 2005, 105: 1377-1400.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kinbara K, Aida T. Toward intelligent molecular machines: Directed motions of biological and artificial molecules and assemblies. Chem Rev, 2005, 105: 1377-1400&
[18]
Kay ER, Leigh DA, Zerbetto F. Synthetic molecular motors and mechanical machines. Angew Chem Int Ed, 2007, 46: 72-191.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kay ER, Leigh DA, Zerbetto F. Synthetic molecular motors and mechanical machines. Angew Chem Int Ed, 2007, 46: 72-191&
[19]
张希, 王朝, 王治强. 超两亲分子: 可控组装与解组装. 中国科学: 化学, 2011, 41: 216-220.
Google Scholar
http://scholar.google.com/scholar_lookup?title=张希, 王朝, 王治强. 超两亲分子: 可控组装与解组装. 中国科学: 化学, 2011, 41: 216-220&
[20]
梁清, 官冰, 江明. 两亲性杯芳烃的超分子自组装. 化学进展, 2010, 22: 388-399.
Google Scholar
http://scholar.google.com/scholar_lookup?title=梁清, 官冰, 江明. 两亲性杯芳烃的超分子自组装. 化学进展, 2010, 22: 388-399&
[21]
马余强. 软物质的自组装. 物理学进展, 2002, 22: 73-98.
Google Scholar
http://scholar.google.com/scholar_lookup?title=马余强. 软物质的自组装. 物理学进展, 2002, 22: 73-98&
[22]
毛晓波, 王晨轩, 刘磊, 马晓晶, 牛琳, 杨延莲, 王琛. 物理化学学报, 2010, 26: 850-861.
Google Scholar
http://scholar.google.com/scholar_lookup?title=毛晓波, 王晨轩, 刘磊, 马晓晶, 牛琳, 杨延莲, 王琛. 物理化学学报, 2010, 26: 850-861&
[23]
张先恩. 科学通报, 2009, 54: 2682-2690.
Google Scholar
http://scholar.google.com/scholar_lookup?title=张先恩. 科学通报, 2009, 54: 2682-2690&
[24]
Pelesko JA. Self Assembly: The Science of Things that Put Themselves Together. Boca Raton: Taylor & Francis, 2007.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Pelesko JA. Self Assembly: The Science of Things that Put Themselves Together. Boca Raton: Taylor & Francis, 2007&
[25]
Lee YS. Self-assembly and Nanotechnology: A Force Balance Approach. Hoboken: Wiley, 2008.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lee YS. Self-assembly and Nanotechnology: A Force Balance Approach. Hoboken: Wiley, 2008&
[26]
江明, A. 爱森伯格, 刘国军, 张希等. 大分子自组装. 北京: 科学出版社, 2006.
Google Scholar
http://scholar.google.com/scholar_lookup?title=江明, A. 爱森伯格, 刘国军, 张希等. 大分子自组装. 北京: 科学出版社, 2006&
[27]
Wöhler F. Ueber künstliche bildung des harnstoffs. Ann Phys-berlin, 1828, 88: 253-256.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wöhler F. Ueber künstliche bildung des harnstoffs. Ann Phys-berlin, 1828, 88: 253-256&
[28]
Ertl G, Knözinger H, Weitkamp J. Handbook of Heterogeneous Catalysis. Weinheim: VCH, 1997.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ertl G, Knözinger H, Weitkamp J. Handbook of Heterogeneous Catalysis. Weinheim: VCH, 1997&
[29]
Thomas JM, Thomas WJ. Principles and Practice of Heterogeneous Catalysis. Weinheim: VCH, 1997.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Thomas JM, Thomas WJ. Principles and Practice of Heterogeneous Catalysis. Weinheim: VCH, 1997&
[30]
Somorjai GA. Introduction to Surface Chemistry and Catalysis. New York: Wiley, 1994.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Somorjai GA. Introduction to Surface Chemistry and Catalysis. New York: Wiley, 1994&
[31]
吴越. 催化化学. 北京: 科学出版社, 1990.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=吴越. 催化化学. 北京: 科学出版社, 1990&
[32]
吴越, 杨向光. 现代催化原理. 北京: 科学出版社, 2005.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=吴越, 杨向光. 现代催化原理. 北京: 科学出版社, 2005&
[33]
Ruokolainen J, Makinen R, Torkkeli M, Makela T, Serimaa R, ten Brinke G, Ikkala O. Switching supramolecular polymeric materials with multiple length scales. Science, 1998, 280: 557-560.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ruokolainen J, Makinen R, Torkkeli M, Makela T, Serimaa R, ten Brinke G, Ikkala O. Switching supramolecular polymeric materials with multiple length scales. Science, 1998, 280: 557-560&
[34]
Duan HW, Chen DY, Jiang M, Gan WJ, Li SJ, Wang M, Gong J. Self-assembly of unlike homopolymers into hollow spheres in nonselective solvent. J Am Chem Soc, 2001, 123: 12097-12098.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Duan HW, Chen DY, Jiang M, Gan WJ, Li SJ, Wang M, Gong J. Self-assembly of unlike homopolymers into hollow spheres in nonselective solvent. J Am Chem Soc, 2001, 123: 12097-12098&
[35]
Park SY, Lytton-Jean AKR, Lee B, Weigand S, Schatz GC, Mirkin CA. DNA-programmable nanoparticle crystallization. Nature, 2008, 451: 553-556.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Park SY, Lytton-Jean AKR, Lee B, Weigand S, Schatz GC, Mirkin CA. DNA-programmable nanoparticle crystallization. Nature, 2008, 451: 553-556&
[36]
Nikitin MP, Zdobnova TA, Lukash SV, Stremovskiy OA, Deyev SM. Protein-assisted self-assembly of multifunctional nanoparticles. Proc Natl Acad Sci USA, 2010, 107: 5827-5832.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nikitin MP, Zdobnova TA, Lukash SV, Stremovskiy OA, Deyev SM. Protein-assisted self-assembly of multifunctional nanoparticles. Proc Natl Acad Sci USA, 2010, 107: 5827-5832&
[37]
Yin YD, Lu Y, Gates B, Xia YN. Template-assisted self-assembly: A practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures. J Am Chem Soc, 2001, 123: 8718-8729.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yin YD, Lu Y, Gates B, Xia YN. Template-assisted self-assembly: A practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures. J Am Chem Soc, 2001, 123: 8718-8729&
[38]
Cheng JY, Ross CA, Smith HI, Thomas EL. Templated self-assembly of block copolymers: Top-down helps bottom-up. Adv Mater, 2006, 18: 2505-2521.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cheng JY, Ross CA, Smith HI, Thomas EL. Templated self-assembly of block copolymers: Top-down helps bottom-up. Adv Mater, 2006, 18: 2505-2521&
[39]
Wan Y, Zhao DY. On the controllable soft-templating approach to mesoporous silicates. Chem Rev, 2007, 107: 2821-2860.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wan Y, Zhao DY. On the controllable soft-templating approach to mesoporous silicates. Chem Rev, 2007, 107: 2821-2860&
[40]
Hurst SJ, Payne EK, Qin LD, Mirkin CA. Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods. Angew Chem Int Ed, 2006, 45: 2672-2692.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hurst SJ, Payne EK, Qin LD, Mirkin CA. Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods. Angew Chem Int Ed, 2006, 45: 2672-2692&
[41]
Zhang FC, Zhang F, Su HN, Li H, Zhang Y, Hu J. Mechanical manipulation assisted self-assembly to achieve defect repair and guided epitaxial growth of individual peptide nanofilaments. Acs Nano, 2010, 4: 5791-5796.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhang FC, Zhang F, Su HN, Li H, Zhang Y, Hu J. Mechanical manipulation assisted self-assembly to achieve defect repair and guided epitaxial growth of individual peptide nanofilaments. Acs Nano, 2010, 4: 5791-5796&
[42]
O'Riordan A, Delaney P, Redmond G. Field configured assembly: Programmed manipulation and self-assembly at the mesoscale. Nano Lett, 2004, 4: 761-765.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=O'Riordan A, Delaney P, Redmond G. Field configured assembly: Programmed manipulation and self-assembly at the mesoscale. Nano Lett, 2004, 4: 761-765&
[43]
Cui H, Pashuck ET, Velichko YS, Weigand SJ, Cheetham AG, Newcomb CJ, Stupp SI. Spontaneous and X-ray-triggered crystallization at long range in self-assembling filament networks. Science, 2010, 327: 555-559.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cui H, Pashuck ET, Velichko YS, Weigand SJ, Cheetham AG, Newcomb CJ, Stupp SI. Spontaneous and X-ray-triggered crystallization at long range in self-assembling filament networks. Science, 2010, 327: 555-559&
[44]
Zheng Z, Gao K, Luo Y, Li D, Meng Q, Wang Y, Zhangt D. Rapidly infrared-assisted cooperatively self-assembled highly ordered multiscale porous materials. J Am Chem Soc, 2008, 130: 9785-9789.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zheng Z, Gao K, Luo Y, Li D, Meng Q, Wang Y, Zhangt D. Rapidly infrared-assisted cooperatively self-assembled highly ordered multiscale porous materials. J Am Chem Soc, 2008, 130: 9785-9789&
[45]
Wang J, Chen QW, Zeng C, Hou BY. Magnetic-field-induced growth of single-crystalline Fe3O4 nanowires. Adv Mater, 2004, 16: 137-140.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wang J, Chen QW, Zeng C, Hou BY. Magnetic-field-induced growth of single-crystalline Fe3O4 nanowires. Adv Mater, 2004, 16: 137-140&
[46]
Kim BG, Kim MS, Kim J. Ultrasonic-assisted nanodimensional self-assembly of poly-3-hexylthiophene for organic photovoltaic cells. Acs Nano, 2010, 4: 2160-2166.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kim BG, Kim MS, Kim J. Ultrasonic-assisted nanodimensional self-assembly of poly-3-hexylthiophene for organic photovoltaic cells. Acs Nano, 2010, 4: 2160-2166&
[47]
Lu YF, Fan HY, Stump A, Ward TL, Rieker T, Brinker CJ. Aerosol-assisted self-assembly of mesostructured spherical nanoparticles. Nature, 1999, 398: 223-226.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lu YF, Fan HY, Stump A, Ward TL, Rieker T, Brinker CJ. Aerosol-assisted self-assembly of mesostructured spherical nanoparticles. Nature, 1999, 398: 223-226&
[48]
Wang Y, Li W, Zhou S, Kong D, Yang H, Wu L. Mn(12) single-molecule magnet aggregates as magnetic resonance imaging contrast agents. Chem Commun, 2011, 3541-3543.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wang Y, Li W, Zhou S, Kong D, Yang H, Wu L. Mn(12) single-molecule magnet aggregates as magnetic resonance imaging contrast agents. Chem Commun, 2011, 3541-3543&
[49]
Putz KW, Compton OC, Palmeri MJ, Nguyen ST, Brinson LC. High-nanofiller-content graphene oxide-polymer nanocomposites via vacuum-assisted self-assembly. Adv Funct Mater, 2010, 20: 3322-3329.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Putz KW, Compton OC, Palmeri MJ, Nguyen ST, Brinson LC. High-nanofiller-content graphene oxide-polymer nanocomposites via vacuum-assisted self-assembly. Adv Funct Mater, 2010, 20: 3322-3329&
[50]
Lim X, Foo HWG, Chia GH, Sow C-H. Capillarity-assisted assembly of carbon nanotube microstructures with organized initiations. Acs Nano, 2010, 4: 1067-1075.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lim X, Foo HWG, Chia GH, Sow C-H. Capillarity-assisted assembly of carbon nanotube microstructures with organized initiations. Acs Nano, 2010, 4: 1067-1075&
[51]
Yeon WC, Kannan B, Wohland T, Ng V. Colloidal crystals from surface-tension-assisted self-assembly: A novel matrix for single-molecule experiments. Langmuir, 2008, 24: 12142-12149.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yeon WC, Kannan B, Wohland T, Ng V. Colloidal crystals from surface-tension-assisted self-assembly: A novel matrix for single-molecule experiments. Langmuir, 2008, 24: 12142-12149&
[52]
Shiozawa H, Chia BCS, Davies NL, Zerella R, Williams DH. Cooperative binding interactions of glycopeptide antibiotics. J Am Chem Soc, 2002, 124: 3914-3919.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shiozawa H, Chia BCS, Davies NL, Zerella R, Williams DH. Cooperative binding interactions of glycopeptide antibiotics. J Am Chem Soc, 2002, 124: 3914-3919&
[53]
Prins LJ, De Jong F, Timmerman P, Reinhoudt DN. An enantiomerically pure hydrogen-bonded assembly. Nature, 2000, 408: 181-184.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Prins LJ, De Jong F, Timmerman P, Reinhoudt DN. An enantiomerically pure hydrogen-bonded assembly. Nature, 2000, 408: 181-184&
[54]
Gold L. Posttranscriptional regulatory mechanisms in Escherichia coli. Annu Rev Biochem, 1988, 57: 199-233.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gold L. Posttranscriptional regulatory mechanisms in Escherichia coli. Annu Rev Biochem, 1988, 57: 199-233&
[55]
Laursen BS, Sorensen HP, Mortensen KK, Sperling-Petersen HU. Initiation of protein synthesis in bacteria. Microbiol Mol Biol R, 2005, 69: 101-123.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Laursen BS, Sorensen HP, Mortensen KK, Sperling-Petersen HU. Initiation of protein synthesis in bacteria. Microbiol Mol Biol R, 2005, 69: 101-123&
[56]
Antoun A, Pavlov MY, Lovmar M, Ehrenberg M. How initiation factors tune the rate of initiation of protein synthesis in bacteria. Embo J, 2006, 25: 2539-2550.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Antoun A, Pavlov MY, Lovmar M, Ehrenberg M. How initiation factors tune the rate of initiation of protein synthesis in bacteria. Embo J, 2006, 25: 2539-2550&
[57]
Gualerzi CO, Fabbretti A, Brandi L, Milon P, Pon CL. Role of the initiation factors in mRNA start site selection and fMet-tRNA recruitment by bacterial ribosomes. Israel J Chem, 2010, 50: 80-94.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gualerzi CO, Fabbretti A, Brandi L, Milon P, Pon CL. Role of the initiation factors in mRNA start site selection and fMet-tRNA recruitment by bacterial ribosomes. Israel J Chem, 2010, 50: 80-94&
[58]
Bolsover SR. Cell biology: A Short Course. Hoboken: Wiley, 2004.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bolsover SR. Cell biology: A Short Course. Hoboken: Wiley, 2004&
[59]
Cordier P, Tournilhac F, Soulie-Ziakovic C, Leibler L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature, 2008, 451: 977-980.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cordier P, Tournilhac F, Soulie-Ziakovic C, Leibler L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature, 2008, 451: 977-980&
[60]
O'Sullivan MC, Sprafke JK, Kondratuk DV, Rinfray C, Claridge TDW, Saywell A, Blunt MO, O'Shea JN, Beton PH, Malfois M, Anderson HL. Vernier templating and synthesis of a 12-porphyrin nano-ring. Nature, 2011, 469: 72-75.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=O'Sullivan MC, Sprafke JK, Kondratuk DV, Rinfray C, Claridge TDW, Saywell A, Blunt MO, O'Shea JN, Beton PH, Malfois M, Anderson HL. Vernier templating and synthesis of a 12-porphyrin nano-ring. Nature, 2011, 469: 72-75&
[61]
Popa MP, McKelvey TA, Hempel J, Hendrix RW. Bacteriophage HK97 structure: Wholesale covalent cross-linking between the major head shell subunits. J Virol, 1991, 65: 3227-37.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Popa MP, McKelvey TA, Hempel J, Hendrix RW. Bacteriophage HK97 structure: Wholesale covalent cross-linking between the major head shell subunits. J Virol, 1991, 65: 3227-37&
[62]
Duda RL, Hempel J, Michel H, Shabanowitz J, Hunt D, Hendrix RW. Structural transitions during bacteriophage HK97 head assembly. J Mol Biol, 1995, 247: 618-635.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Duda RL, Hempel J, Michel H, Shabanowitz J, Hunt D, Hendrix RW. Structural transitions during bacteriophage HK97 head assembly. J Mol Biol, 1995, 247: 618-635&
[63]
Wikoff WR, Liljas L, Duda RL, Tsuruta H, Hendrix RW, Johnson JE. Topologically linked protein rings in the bacteriophage HK97 capsid. Science, 2000, 289: 2129-2133.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wikoff WR, Liljas L, Duda RL, Tsuruta H, Hendrix RW, Johnson JE. Topologically linked protein rings in the bacteriophage HK97 capsid. Science, 2000, 289: 2129-2133&
[64]
Dierkes LE, Peebles CL, Firek BA, Hendrix RW, Duda RL. Mutational analysis of a conserved glutamic acid required for self-catalyzed cross-linking of bacteriophage HK97 capsids. J Virol, 2009, 83: 2088-2098.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dierkes LE, Peebles CL, Firek BA, Hendrix RW, Duda RL. Mutational analysis of a conserved glutamic acid required for self-catalyzed cross-linking of bacteriophage HK97 capsids. J Virol, 2009, 83: 2088-2098&
[65]
Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science, 2001, 294: 1684-1688.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science, 2001, 294: 1684-1688&
[66]
Ozbas B, Kretsinger J, Rajagopal K, Schneider JP, Pochan DJ. Salt-triggered peptide folding and consequent self-assembly into hydrogels with tunable modulus. Macromolecules, 2004, 37: 7331-7337.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ozbas B, Kretsinger J, Rajagopal K, Schneider JP, Pochan DJ. Salt-triggered peptide folding and consequent self-assembly into hydrogels with tunable modulus. Macromolecules, 2004, 37: 7331-7337&
[67]
Lauceri R, Raudino A, Scolaro LM, Micali N, Purrello R. From achiral porphyrins to template-imprinted chiral aggregates and further. Self-replication of chiral memory from scratch. J Am Chem Soc, 2002, 124: 894-895.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lauceri R, Raudino A, Scolaro LM, Micali N, Purrello R. From achiral porphyrins to template-imprinted chiral aggregates and further. Self-replication of chiral memory from scratch. J Am Chem Soc, 2002, 124: 894-895&
[68]
Ulman A. Formation and structure of self-assembled monolayers. Chem Rev, 1996, 96: 1533-1554.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ulman A. Formation and structure of self-assembled monolayers. Chem Rev, 1996, 96: 1533-1554&
[69]
Love J, Estroff L, Kriebel J, Nuzzo R, Whitesides G. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev, 2005, 105: 1103-1170.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Love J, Estroff L, Kriebel J, Nuzzo R, Whitesides G. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev, 2005, 105: 1103-1170&
[70]
Wu C, Niu AZ, Leung LM, Lam TS. Preparation of narrowly distributed stable and soluble polyacetylene block copolymer nanoparticles. J Am Chem Soc, 1999, 121: 1954-1955.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wu C, Niu AZ, Leung LM, Lam TS. Preparation of narrowly distributed stable and soluble polyacetylene block copolymer nanoparticles. J Am Chem Soc, 1999, 121: 1954-1955&
[71]
Wang YP, Ma N, Wang ZQ, Zhang X. Photocontrolled reversible supramolecular assemblies of an azobenzene-containing surfactant with alpha-cyclodextrin. Angew Chem Int Ed, 2007, 46: 2823-2826.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wang YP, Ma N, Wang ZQ, Zhang X. Photocontrolled reversible supramolecular assemblies of an azobenzene-containing surfactant with alpha-cyclodextrin. Angew Chem Int Ed, 2007, 46: 2823-2826&
[72]
Asakawa M, Ashton PR, Balzani V, Credi A, Mattersteig G, Matthews OA, Montalti M, Spencer N, Stoddart JF, Venturi M. Electrochemically induced molecular motions in pseudorotaxanes: A case of dual-mode (oxidative and reductive) dethreading. Chem Eur J, 1997, 3: 1992-1996.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Asakawa M, Ashton PR, Balzani V, Credi A, Mattersteig G, Matthews OA, Montalti M, Spencer N, Stoddart JF, Venturi M. Electrochemically induced molecular motions in pseudorotaxanes: A case of dual-mode (oxidative and reductive) dethreading. Chem Eur J, 1997, 3: 1992-1996&
[73]
Williams RJ, Smith AM, Collins R, Hodson N, Das AK, Ulijn RV. Enzyme-assisted self-assembly under thermodynamic control. Nature Nanotech, 2009, 4: 19-24.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Williams RJ, Smith AM, Collins R, Hodson N, Das AK, Ulijn RV. Enzyme-assisted self-assembly under thermodynamic control. Nature Nanotech, 2009, 4: 19-24&
[74]
Bukau B, Horwich AL. The Hsp70 and Hsp60 chaperone machines. Cell, 1998, 92: 351-366.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bukau B, Horwich AL. The Hsp70 and Hsp60 chaperone machines. Cell, 1998, 92: 351-366&
[75]
王志珍. 蛋白质折叠和分子伴侣. 生物学通报, 2004, 39: 1-6.
Google Scholar
http://scholar.google.com/scholar_lookup?title=王志珍. 蛋白质折叠和分子伴侣. 生物学通报, 2004, 39: 1-6&
[76]
Dobson CM. Protein folding and misfolding. Nature, 2003, 426: 884-890.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dobson CM. Protein folding and misfolding. Nature, 2003, 426: 884-890&
[77]
Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature, 2008, 451: 1069-1075.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature, 2008, 451: 1069-1075&
[78]
Goldschmidt L, Teng PK, Riek R, Eisenberg D. Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc Natl Acad Sci USA, 2010, 107: 3487-3492.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Goldschmidt L, Teng PK, Riek R, Eisenberg D. Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc Natl Acad Sci USA, 2010, 107: 3487-3492&
[79]
Ma J, Yee A, Brewer HB Jr, Das S, Potter H. Amyloid-associated proteins alpha-1-antichymotrypsin and Apolipoprotein E promote assembly of Alzheimer beta-protein into filaments. Nature (London), 1994, 372: 92-94.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ma J, Yee A, Brewer HB Jr, Das S, Potter H. Amyloid-associated proteins alpha-1-antichymotrypsin and Apolipoprotein E promote assembly of Alzheimer beta-protein into filaments. Nature (London), 1994, 372: 92-94&
[80]
Prusiner SB. Prions. Proc Natl Acad Sci USA, 1998, 95: 13363-13383.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Prusiner SB. Prions. Proc Natl Acad Sci USA, 1998, 95: 13363-13383&
[81]
Rozema D; Gellman SH. Artificial chaperone-assisted refolding of denatured-reduced lysozyme: Modulation of the competition between renaturation and aggregation. Biochemistry, 1996, 35: 15760-15771.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Rozema D; Gellman SH. Artificial chaperone-assisted refolding of denatured-reduced lysozyme: Modulation of the competition between renaturation and aggregation. Biochemistry, 1996, 35: 15760-15771&
[82]
Irie T; Uekama K. Cyclodextrins in peptide and protein delivery. Adv Drug Deliver Rev, 1999, 36: 101-123.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Irie T; Uekama K. Cyclodextrins in peptide and protein delivery. Adv Drug Deliver Rev, 1999, 36: 101-123&
[83]
Takahashi H; Sawada S; Akiyoshi K. Amphiphilic polysaccharide nanoballs: A new building block for nanogel biomedical engineering and artificial chaperones. Acs Nano, 2011, 5: 337-345.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Takahashi H; Sawada S; Akiyoshi K. Amphiphilic polysaccharide nanoballs: A new building block for nanogel biomedical engineering and artificial chaperones. Acs Nano, 2011, 5: 337-345&
[84]
Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA, O'Mahony J, Whitcombe MJ. Molecular imprinting science and technology: A survey of the literature for the years up to and including 2003. J Mol Recognit, 2006, 19: 106-180.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA, O'Mahony J, Whitcombe MJ. Molecular imprinting science and technology: A survey of the literature for the years up to and including 2003. J Mol Recognit, 2006, 19: 106-180&
[85]
Song RQ, Cölfen H. Mesocrystals-ordered nanoparticle superstructures. Adv Mater, 2010, 22: 1301-1330.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Song RQ, Cölfen H. Mesocrystals-ordered nanoparticle superstructures. Adv Mater, 2010, 22: 1301-1330&
[86]
Li XD, Chang WC, Chao YJ, Wang RZ, Chang M. Nanoscale structural and mechanical characterization of a natural nanocomposite material: The shell of red abalone. Nano Lett, 2004, 4: 613-617.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li XD, Chang WC, Chao YJ, Wang RZ, Chang M. Nanoscale structural and mechanical characterization of a natural nanocomposite material: The shell of red abalone. Nano Lett, 2004, 4: 613-617&
[87]
Zhuang JQ, Wu HM, Yang YA, Cao YC. Supercrystalline colloidal particles from artificial atoms. J Am Chem Soc, 2007, 129: 14166-14167.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhuang JQ, Wu HM, Yang YA, Cao YC. Supercrystalline colloidal particles from artificial atoms. J Am Chem Soc, 2007, 129: 14166-14167&
[88]
Walcarius A, Sibottier E, Etienne M, Ghanbaja J. Electrochemically assisted self-assembly of mesoporous silica thin films. Nat Mater, 2007, 6: 602-608.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Walcarius A, Sibottier E, Etienne M, Ghanbaja J. Electrochemically assisted self-assembly of mesoporous silica thin films. Nat Mater, 2007, 6: 602-608&
[89]
Chen SF, Zhu JH, Jiang J, Cai GB, Yu SH. Polymer-controlled crystallization of unique mineral superstructures. Adv Mater, 2010, 22: 540-545.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chen SF, Zhu JH, Jiang J, Cai GB, Yu SH. Polymer-controlled crystallization of unique mineral superstructures. Adv Mater, 2010, 22: 540-545&
[90]
Xie S, Zhou X, Han X, Kuang Q, Jin M, Jiang Y, Xie Z, Zheng L. Supercrystals from crystallization of octahedral MnO nanocrystals. J Phys Chem C, 2009, 113: 19107-19111.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Xie S, Zhou X, Han X, Kuang Q, Jin M, Jiang Y, Xie Z, Zheng L. Supercrystals from crystallization of octahedral MnO nanocrystals. J Phys Chem C, 2009, 113: 19107-19111&
[91]
由德林. 酶工程原理. 北京: 科学出版社, 2011.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=由德林. 酶工程原理. 北京: 科学出版社, 2011&
[92]
郑惠平, 郭勇, 潘力. 酶学(第二版). 北京: 科学出版社, 2009.
Google Scholar
http://scholar.google.com/scholar_lookup?title=郑惠平, 郭勇, 潘力. 酶学(第二版). 北京: 科学出版社, 2009&
[93]
马兰戈尼 著, 赵裕蓉, 张鹏 译. 酶催化动力学: 方法与应用. 北京: 化学工业出版社, 2007.
Google Scholar
http://scholar.google.com/scholar_lookup?title=马兰戈尼 著, 赵裕蓉, 张鹏 译. 酶催化动力学: 方法与应用. 北京: 化学工业出版社, 2007&
[94]
哈肯 著, 凌复华 译. 协同学: 大自然构成的奥秘. 上海: 上海译文出版社, 2006.
Google Scholar
http://scholar.google.com/scholar_lookup?title=哈肯 著, 凌复华 译. 协同学: 大自然构成的奥秘. 上海: 上海译文出版社, 2006&
[95]
Witten TA. Insights from soft condensed matter. Rev Mod Phys, 1999, 71: 367-373.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Witten TA. Insights from soft condensed matter. Rev Mod Phys, 1999, 71: 367-373&
[96]
陆坤权, 刘寄星. 软物质物理学导论. 北京: 北京大学出版社, 2005.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=陆坤权, 刘寄星. 软物质物理学导论. 北京: 北京大学出版社, 2005&
[97]
Lindstrom B, Pettersson LJ. A brief history of catalysis. Cattech, 2003, 7: 130-138.
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lindstrom B, Pettersson LJ. A brief history of catalysis. Cattech, 2003, 7: 130-138&