logo

SCIENTIA SINICA Mathematica, Volume 47 , Issue 10 : 1155-1182(2017) https://doi.org/10.1360/N012016-00176

Rayleigh-Taylor and Parker instabilities in MHD fluids

More info
  • ReceivedOct 8, 2016
  • AcceptedNov 24, 2016
  • PublishedJan 17, 2017

Abstract

We present a brief survey of recent mathematical results on the stability and instability of magnetohydrodynamic flows in the presence of a gravitational field, which include the incompressible magnetic Rayleigh-Taylor instability, and the Parker instability (i.e., the magnetic buoyancy instability) in compressible magnetohydrodynamics. In particular, the stabilizing effect of some factors (e.g., steady magnetic fields, boundary conditions, domains) are analyzed. In addition, the mathematical results on the Rayleigh-Taylor instability problem in viscoelastic flows are discussed.


Funded by

国家自然科学基金(11271051)

国家自然科学基金(11229101)

国家自然科学基金(11301083)

国家自然科学基金(11371065)

国家自然科学基金(11471134)

国家自然科学基金(11631008)

国家自然科学基金(11671086)

国家重点基础研究发展计划(973计划)

(2014CB745002)


References

[1] Rayleigh L. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc Lond Math Soc, 1883, 14: 170-177. Google Scholar

[2] Taylor G I. The instability of liquid surface when accelerated in a direction perpendicular to their planes. Proc R Soc Lond Ser A Math Phys Eng Sci, 1950, 201: 192-196 CrossRef Google Scholar

[3] Castro A, Codoba D, Fefferman C, et al. Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves. Ann of Math (2), 2012, 175: 909-948 CrossRef Google Scholar

[4] Chandrasekhar S. Hydrodynamic and Hydromagnetic Stability. The International Series of Monographs on Physics. Oxford: Clarendon Press, 1961. Google Scholar

[5] 王继海. 二维非定常流和激波. 中国工程物理研究院科技丛书. 北京: 科学出版社, 1994. Google Scholar

[6] Kruskal M, Schwarzschild M. Some instabilities of a completely ionized plasma. Proc R Soc Lond Ser A Math Phys Eng Sci, 1954, 233: 348-360. Google Scholar

[7] Acheson D J. Instability by magnetic buoyancy. Sol Phys, 1979, 62: 23-50 CrossRef Google Scholar

[8] Kim J, Ryu D, Hong S S, et al. The Parker instability. Astrophys Space Sci Lib, 2005, 315: 315-322 CrossRef Google Scholar

[9] Shibata K, Matsumoto R. Formation of giant molecular clouds and helical magnetic fields by the Parker instability. Nature, 1991, 353: 633-635 CrossRef Google Scholar

[10] Parker E N. The dynamical state of the interstellar gas and field. Astroghys J, 1966, 145: 811-833 CrossRef Google Scholar

[11] Parker E N. The formation of sunspots from the solar toroidal field. Astroghys J, 1955, 121: 491-507 CrossRef Google Scholar

[12] Mouschovias T C, Kunz M M, Christie D A. Formation of interstellar clouds: Parker instability with phase transitions. Monthly Not Roy Astron Soc, 2009, 397: 14-23 CrossRef Google Scholar

[13] Fukui Y, Yamamoto H, Fujishita M, et al. Molecular loops in the galactic center: evidence for magnetic flotation. Science, 2006, 314: 106-109 CrossRef Google Scholar

[14] Barker A J, Silvers L J, Proctor M R, et al. Magnetic buoyancy instabilities in the presence of magnetic flux pumping at the base of the solar convection zone. Monthly Not Roy Astron Soc, 2012, 424: 115-127 CrossRef Google Scholar

[15] Kowal G, Hanasz M, Otmianowska-Mazur K. Resistive MHD simulations of the Parker instability in galactic disks. Astron Astrophys, 2005, 315: 315-322. Google Scholar

[16] Vasil G M, Brummell N H. Magnetic buoyancy instabilities of a shear-generated magnetic layer. Astrophys J, 2008, 686: 709-730 CrossRef Google Scholar

[17] Khalzov I V, Brown B P, Katz N, et al. Modeling the Parker instability in a rotating plasma screw pinch. Phys Plasmas, 2012, 19: 022107-730 CrossRef Google Scholar

[18] Kim J, Ryu D, Jones T W. Three-dimensional simulations of the Parker instability in a uniformly-rotating disk. Astrophys J, 2001, 557: 464-474 CrossRef Google Scholar

[19] Kuwabara T, Nakamura K, Ko C. Nonlinear Parker instability with the effect of cosmic-ray diffusion. Astrophys J, 2004, 607: 828-839 CrossRef Google Scholar

[20] Lo Y Y, Ko C M, Wang C Y. 3D Magneto-hydrodynamic simulations of Parker instability with cosmic rays. Comput Phys Comm, 2011, 182: 177-179 CrossRef Google Scholar

[21] Cabannes H. Theoretical Magnetofluiddynamics. New York: Academic Press, 1970. Google Scholar

[22] Cowling T G. Magnetohydrodynamics, 2nd ed. London: Adam Hilger, 1976. Google Scholar

[23] Kulikovskiy A G, Lyubimov G A. Magnetohydrodynamics. Massachusetts: Addison-Wesley, 1965. Google Scholar

[24] Landau L, Lifshitz E, Pitaevskii L. Electrodynamics of Continuous Media, vol. 8: Course of Theoretical Physics. Oxford: Butterworth-Heinemann, 1984. Google Scholar

[25] Jiang F, Jiang S, Wang Y J. On the Rayleigh-Taylor instability for the incompressible viscous magnetohydrodynamic equations. Comm Partial Differential Equations, 2014, 39: 399-438 CrossRef Google Scholar

[26] Friedlander S, Pavlović N, Shvydkoy R. Nonlinear instability for the Navier-Stokes equations. Comm Math Phys, 2006, 264: 335-347 CrossRef Google Scholar

[27] Hide R. Waves in a heavy, viscous, incompressible, electrically conducting fluid of variable density, in the presence of a magnetic field. Proc R Soc Lond Ser A Math Phys Eng Sci, 1955, 233: 376-396 CrossRef Google Scholar

[28] Jiang F, Jiang S. On linear instability and stability of the Rayleigh-Taylor problem in magnetohydrodynamics. J Math Fluid Mech, 2015, 17: 639-668 CrossRef Google Scholar

[29] Guo Y, Tice I. Linear Rayleigh-Taylor instability for viscous, compressible fluids. SIAM J Math Anal, 2011, 42: 1688-1720. Google Scholar

[30] Jiang F, Jiang S. On instability and stability of three-dimensional gravity flows in a bounded domain. Adv Math, 2014, 264: 831-863 CrossRef Google Scholar

[31] Jiang F, Jiang S. On the stabilizing effect of the magnetic field in the magnetic Rayleigh-Taylor problem. Http://wenku.baidu.com/view/23db63a131b765ce040814a7?fr=prin, 2016. Google Scholar

[32] Jiang F, Jiang S, Wang W W. Nonlinear Rayleigh-Taylor instability in nonhomogeneous incompressible viscous magnetohydrodynamic fluids. Discrete Contin Dyn Syst Ser S, 2016, 9: 1853-1898 CrossRef Google Scholar

[33] 李大潜, 秦铁虎. 物理学与偏微分方程. 第2版上册. 北京: 高等教育出版社, 2011. Google Scholar

[34] Newcomb W. Convective instability induced by gravity in a plasma with a frozen-in magnetic field. Phys Fluids, 1961, 4: 391-396 CrossRef Google Scholar

[35] Abidi H, Zhang P. On the global solution of 3-D MHD system with initial data near equilibrium. Comm Pure Appl Math, doi: 10.1002/cpa.21645, 2016. Google Scholar

[36] Ren X X, Wu J H, Xiang Z Y, et al. Global existence and decay of smooth solution for the 2-D MHD equations without magnetic diffusion. J Funct Anal, 2014, 267: 503-541 CrossRef Google Scholar

[37] Hu X P. Global existence for two dimensional compressible magnetohydrodynamic flows with zero magnetic diffusivity. ArXiv:1405.0274, 2014. Google Scholar

[38] Wang Y J. Critical magnetic number in the MHD Rayleigh-Taylor instability. J Math Phys, 2012, 53: 073701-541 CrossRef Google Scholar

[39] Guo Y, Tice I. Almost exponential decay of periodic viscous surface waves without surface tension. Arch Ration Mech Anal, 2013, 207: 459-531 CrossRef Google Scholar

[40] Guo Y, Tice I. Decay of viscous surface waves without surface tension in horizontally infinite domains. Anal PDE, 2013, 6: 1429-1533 CrossRef Google Scholar

[41] Strain R M, Guo Y. Almost exponential decay near maxwellian. Comm Partial Differential Equations, 2006, 31: 417-429 CrossRef Google Scholar

[42] Tan Z, Wang Y J. Global well-posedness of an initial-boundary value problem for viscous non-resistive MHD systems. ArXiv:1509.08349, 2015. Google Scholar

[43] Hwang H J. Variational approach to nonlinear gravity-driven instability in a MHD setting. Quart Appl Math, 2008, 66: 303-324 CrossRef Google Scholar

[44] Guo Y, Strauss W. Instability of periodic BGK equilibria. Comm Pure Appl Math, 1995, 48: 861-894 CrossRef Google Scholar

[45] Guo Y, Strauss W. Nonlinear instability of double-humped equilibria. Ann Inst H Poincaré Anal Non Linéaire, 1995, 12: 339-352. Google Scholar

[46] Friedlander S, Strauss W, Vishik M. Nonlinear instability in an ideal fluid. Ann Inst H Poincaré Anal Non Linéaire, 1997, 14: 187-209. Google Scholar

[47] Pr$\mathrm{\ddot{u}}$ess J, Simonett G. On the Rayleigh-Taylor instability for the two-phase Navier-Stokes equations. Indiana Univ Math J, 2010, 59: 1853-1871 CrossRef Google Scholar

[48] Hwang H J, Guo Y. On the dynamical Rayleigh-Taylor instability. Arch Ration Mech Anal, 2003, 167: 235-253 CrossRef Google Scholar

[49] Guo Y, Hallstrom C, Spirn D. Dynamics near unstable, interfacial fluids. Comm Math Phys, 2007, 270: 635-689 CrossRef Google Scholar

[50] Jiang F, Jiang S. Stabilizing effect of the equilibrium magnetic fields upon the Parker instability. Https://pan.baidu. com/s/1o7UYtNO, 2016. Google Scholar

[51] Tserkovnikov Y A. The question of convectional instability of a plasma. Soviet Phys Dokl, 1960, 5: 87-89. Google Scholar

[52] Lei Z. On 2D viscoelasticity with small strain. Arch Ration Mech Anal, 2010, 198: 371-398. Google Scholar

[53] Lei Z, Liu C, Zhou Y. Global solutions for incompressible viscoelastic fluids. Arch Ration Mech Anal, 2008, 188: 371-398 CrossRef Google Scholar

[54] Lin F H. Some analytical issues for elastic complex fluids. Comm Pure Appl Math, 2012, 65: 893-919 CrossRef Google Scholar

[55] Lin F H, Liu C, Zhang P. On hydrodynamics of viscoelastic fluids. Comm Pure Appl Math, 2005, 57: 1437-1471. Google Scholar

[56] Lin F H, Zhang P. On the initial-boundary value problem of the incompressible viscoelastic fluid system. Comm Pure Appl Math, 2008, 61: 539-558 CrossRef Google Scholar

[57] Hu X P, Wang D H. Global existence for the multi-dimensional compressible viscoelastic flows. J Differential Equations, 2011, 250: 1200-1231 CrossRef Google Scholar

[58] Hu X P, Wu G C. Global existence and optimal decay rates for three-dimensional compressible viscoelastic flows. SIAM J Math Anal, 2013, 45: 2815-2833 CrossRef Google Scholar

[59] Boffetta G, Mazzino A, Musacchio S, et al. Rayleigh-Taylor instability in a viscoelastic binary fluid. J Fluid Mech, 2010, 643: 127-136 CrossRef Google Scholar

[60] Sharma R C, Sharma K C. Rayleigh-Taylor instability of two viscoelastic superposed fluids. Acta Phys Acad Sci Hungar, 1978, 45: 213-220 CrossRef Google Scholar

[61] Guo Y, Tice I. Compressible, inviscid Rayleigh-Taylor instability. Indiana Univ Math J, 2011, 60: 677-712 CrossRef Google Scholar

[62] Wang Y J, Tice I, Kim C. The viscous surface-internal wave problem: Global well-posedness and decay. Arch Ration Mech Anal, 2014, 212: 1-92 CrossRef Google Scholar

[63] Jiang F, Wu G C, Zhong X. On exponential stability of gravity driven viscoelastic flows. J Differential Equations, 2016, 260: 7498-7534 CrossRef Google Scholar

[64] Jiang F, Jiang S, Wu G C. On stabilizing effect of elasticity in Rayleigh-Taylor problem of stratified viscoelastic fluids. Https://pan.baidu.com/s/1bp9qrWN, 2016. Google Scholar

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号