logo

SCIENTIA SINICA Chimica, Volume 49 , Issue 3 : 441-454(2019) https://doi.org/10.1360/N032018-00203

Construction and manipulation of self-assemble structures on solid surfaces

More info
  • ReceivedSep 3, 2018
  • AcceptedOct 31, 2018
  • PublishedJan 9, 2019

Abstract

Construction of two-dimensional (2D) molecular crystals on solid surfaces is an important way to synthesize supermolecular materials and functionalize solid surfaces. In this review, we provide an overview of the formation mechanism of the 2D self-assembled molecular crystals, and the control of the structures and electronic structures by combining theoretical calculations with scanning tunneling microscopy (STM). Here we focus on the molecular self-assembled structures dominated by weak interactions. Several key factors are listed, for example, the electronic structures of solid surfaces, the configuration of molecules, the interaction of molecules, the interaction between molecules and substrates, and the bromine adatom assisted self-assembly. Finally, we assess future directions of research in this field, where the overall consideration of all the aspects we discussed is important.


Funded by

国家重点研发计划“纳米科技”重点专项(2016YFA0202303)

中国科学院战略性先导科技专项(B类)

中国科学院率先行动“百人计划”


References

[1] Kubo Y, Maeda S, Tokita S, Kubo M. Nature, 1996, 382: 522-524 CrossRef ADS Google Scholar

[2] James TD, Samankumara Sandanayake KRA, Shinkai S. Nature, 1995, 374: 345-347 CrossRef ADS Google Scholar

[3] Zhang YY, Du SX, Gao HJ. Chin Sci Bull, 2018, 63: 1255-1264 CrossRef Google Scholar

[4] Rojas MT, Kaifer AE. J Am Chem Soc, 1995, 117: 5883-5884 CrossRef Google Scholar

[5] Mackintosh HJ, Budd PM, McKeown NB. J Mater Chem, 2008, 18: 573-578 CrossRef Google Scholar

[6] Sorokin AB. Chem Rev, 2013, 113: 8152-8191 CrossRef PubMed Google Scholar

[7] List B, Yang JW. Science, 2006, 313: 1584-1586 CrossRef PubMed Google Scholar

[8] Böhringer M, Morgenstern K, Schneider WD, Berndt R, Mauri F, De Vita A, Car R. Phys Rev Lett, 1999, 83: 324-327 CrossRef ADS Google Scholar

[9] Pawin G, Wong KL, Kwon KY, Bartels L. Science, 2006, 313: 961-962 CrossRef PubMed ADS Google Scholar

[10] Lin X, Nilius N. J Phys Chem C, 2008, 112: 15325-15328 CrossRef Google Scholar

[11] Dong L, Gao Z’, Lin N. Prog Surf Sci, 2016, 91: 101-135 CrossRef ADS Google Scholar

[12] Barth JV, Costantini G, Kern K. Nature, 2005, 437: 671-679 CrossRef PubMed ADS Google Scholar

[13] Harikumar KR, Lim T, McNab IR, Polanyi JC, Zotti L, Ayissi S, Hofer WA. Nat Nanotech, 2008, 3: 222-228 CrossRef PubMed Google Scholar

[14] Gong Z, Yang B, Lin H, Tang Y, Tang Z, Zhang J, Zhang H, Li Y, Xie Y, Li Q, Chi L. ACS Nano, 2016, 10: 4228-4235 CrossRef Google Scholar

[15] Liu XH, Mo YP, Yue JY, Zheng QN, Yan HJ, Wang D, Wan LJ. Small, 2014, 10: 4934-4939 CrossRef PubMed Google Scholar

[16] Stepanow S, Lingenfelder M, Dmitriev A, Spillmann H, Delvigne E, Lin N, Deng X, Cai C, Barth JV, Kern K. Nat Mater, 2004, 3: 229-233 CrossRef PubMed ADS Google Scholar

[17] Liu J, Fu X, Chen Q, Zhang Y, Wang Y, Zhao D, Chen W, Xu GQ, Liao P, Wu K. Chem Commun, 2016, 52: 12944-12947 CrossRef PubMed Google Scholar

[18] Zhou X, Dai J, Wu K. Phys Chem Chem Phys, 2017, 19: 31531-31539 CrossRef PubMed ADS Google Scholar

[19] Theobald JA, Oxtoby NS, Phillips MA, Champness NR, Beton PH. Nature, 2003, 424: 1029-1031 CrossRef PubMed ADS Google Scholar

[20] Shang J, Wang Y, Chen M, Dai J, Zhou X, Kuttner J, Hilt G, Shao X, Gottfried JM, Wu K. Nat Chem, 2015, 7: 389-393 CrossRef PubMed ADS Google Scholar

[21] Xiao W, Ruffieux P, Aït-Mansour K, Gröning O, Palotas K, Hofer WA, Gröning P, Fasel R. J Phys Chem B, 2006, 110: 21394-21398 CrossRef PubMed Google Scholar

[22] Zhang YY, Wang YL, Meng L, Zhang SB, Gao HJ. J Phys Chem C, 2014, 118: 6278-6282 CrossRef Google Scholar

[23] Cai JM, Zhang YY, Hu H, Bao L H, Pan LD, Tang W, Li G, Du SX, Shen J, Gao HJ. Chin Phys B, 2010, 19: 067101 CrossRef ADS Google Scholar

[24] Dil H, Lobo-Checa J, Laskowski R, Blaha P, Berner S, Osterwalder J, Greber T. Science, 2008, 319: 1824-1826 CrossRef PubMed ADS Google Scholar

[25] Ren J, Bao DL, Dong L, Gao L, Wu R, Yan L, Wang A, Yan J, Wang Y, Huan Q, Sun JT, Du S, Gao HJ. J Phys Chem C, 2017, 121: 21650-21657 CrossRef Google Scholar

[26] Barth JV, Weckesser J, Trimarchi G, Vladimirova M, De Vita A, Cai C, Brune H, Günter P, Kern K. J Am Chem Soc, 2002, 124: 7991-8000 CrossRef Google Scholar

[27] Marschall M, Reichert J, Weber-Bargioni A, Seufert K, Auwärter W, Klyatskaya S, Zoppellaro G, Ruben M, Barth JV. Nat Chem, 2010, 2: 131-137 CrossRef PubMed ADS Google Scholar

[28] Wu R, Yan L, Zhang Y, Ren J, Bao D, Zhang H, Wang Y, Du S, Huan Q, Gao HJ. J Phys Chem C, 2015, 119: 8208-8212 CrossRef Google Scholar

[29] Han P, Mantooth BA, Sykes ECH, Donhauser ZJ, Weiss PS. J Am Chem Soc, 2004, 126: 10787-10793 CrossRef PubMed Google Scholar

[30] Åhlund J, Schnadt J, Nilson K, Göthelid E, Schiessling J, Besenbacher F, Mårtensson N, Puglia C. Surf Sci, 2007, 601: 3661-3667 CrossRef ADS Google Scholar

[31] Cheng ZH, Gao L, Deng ZT, Jiang N, Liu Q, Shi DX, Du SX, Guo HM, Gao HJ. J Phys Chem C, 2007, 111: 9240-9244 CrossRef Google Scholar

[32] Zhang YY, Du SX, Gao HJ. Phys Rev B, 2011, 84: 125446 CrossRef ADS Google Scholar

[33] Jiang N, Zhang YY, Liu Q, Cheng ZH, Deng ZT, Du SX, Gao HJ, Beck MJ, Pantelides ST. Nano Lett, 2010, 10: 1184-1188 CrossRef PubMed ADS Google Scholar

[34] Zhang L, Cheng Z, Huan Q, He X, Lin X, Gao L, Deng Z, Jiang N, Liu Q, Du S, Guo H, Gao H. J Phys Chem C, 2011, 115: 10791-10796 CrossRef Google Scholar

[35] Petraki F, Peisert H, Aygül U, Latteyer F, Uihlein J, Vollmer A, Chassé T. J Phys Chem C, 2012, 116: 11110-11116 CrossRef Google Scholar

[36] Palmgren P, Yu S, Hennies F, Nilson K, Akermark B, Göthelid M. J Chem Phys, 2008, 129: 074707 CrossRef PubMed ADS Google Scholar

[37] Song YR, Zhang YY, Yang F, Zhang KF, Liu C, Qian D, Gao CL, Zhang SB, Jia JF. Phys Rev B, 2014, 90: 180408 CrossRef ADS Google Scholar

[38] Cheng ZH, Gao L, Deng ZT, Liu Q, Jiang N, Lin X, He XB, Du SX, Gao HJ. J Phys Chem C, 2007, 111: 2656-2660 CrossRef Google Scholar

[39] Liu Q, Zhang YY, Jiang N, Zhang HG, Gao L, Du SX, Gao HJ. Phys Rev Lett, 2010, 104: 166101 CrossRef PubMed ADS Google Scholar

[40] Shen X, Wei X, Tan P, Yu Y, Yang B, Gong Z, Zhang H, Lin H, Li Y, Li Q, Xie Y, Chi L. Small, 2015, 11: 2284-2290 CrossRef PubMed Google Scholar

[41] Wang Y, Fabris S, White TW, Pagliuca F, Moras P, Papagno M, Topwal D, Sheverdyaeva P, Carbone C, Lingenfelder M, Classen T, Kern K, Costantini G. Chem Commun, 2012, 48: 534-536 CrossRef PubMed Google Scholar

[42] Pan Y, Zhang H, Shi D, Sun J, Du S, Liu F, Gao H. Adv Mater, 2009, 21: 2777-2780 CrossRef Google Scholar

[43] Zhang HG, Sun JT, Low T, Zhang LZ, Pan Y, Liu Q, Mao JH, Zhou HT, Guo HM, Du SX, Guinea F, Gao HJ. Phys Rev B, 2011, 84: 245436 CrossRef ADS Google Scholar

[44] Zhang JF, Zhang M, Zhao YW, Zhang HY, Zhao LN, Luo YH. Chin Phys B, 2015, 24: 067101 CrossRef ADS Google Scholar

[45] Guo W, Du SX, Zhang YY, Hofer WA, Seidel C, Chi LF, Fuchs H, Gao HJ. Surf Sci, 2009, 603: 2815-2819 CrossRef ADS Google Scholar

[46] Mao J, Zhang H, Jiang Y, Pan Y, Gao M, Xiao W, Gao HJ. J Am Chem Soc, 2009, 131: 14136-14137 CrossRef PubMed Google Scholar

[47] Yang K, Xiao WD, Jiang YH, Zhang HG, Liu LW, Mao JH, Zhou HT, Du SX, Gao HJ. J Phys Chem C, 2012, 116: 14052-14056 CrossRef Google Scholar

[48] Zhou H, Zhang L, Mao J, Li G, Zhang Y, Wang Y, Du S, Hofer WA, Gao HJ. Nano Res, 2013, 6: 131-137 CrossRef Google Scholar

[49] Li G, Zhou HT, Pan LD, Zhang Y, Mao JH, Zou Q, Guo HM, Wang YL, Du SX, Gao HJ. Appl Phys Lett, 2012, 100: 013304 CrossRef ADS Google Scholar

[50] Zhang H, Xiao WD, Mao J, Zhou H, Li G, Zhang Y, Liu L, Du S, Gao HJ. J Phys Chem C, 2012, 116: 11091-11095 CrossRef Google Scholar

[51] Zhang LZ, Du SX, Sun JT, Huang L, Meng L, Xu WY, Pan LD, Pan Y, Wang YL, Hofer WA, Gao HJ. Adv Mater Interfaces, 2014, 1: 1300104 CrossRef Google Scholar

[52] Liu LW, Xiao WD, Yang K, Zhang LZ, Jiang YH, Fei XM, Du SX, Gao HJ. J Phys Chem C, 2013, 117: 22652-22655 CrossRef Google Scholar

[53] Shichiri T, Suezaki M, Inoue T. Chem Lett, 1992, 21: 1717-1720 CrossRef Google Scholar

[54] Hiramoto M, Kawase S, Yokoyama M. Jpn J Appl Phys, 1996, 35: L349-L351 CrossRef ADS Google Scholar

[55] Giancarlo LC, Flynn GW. Acc Chem Res, 2000, 33: 491-501 CrossRef Google Scholar

[56] Shi DX, Ji W, Lin X, He XB, Lian JC, Gao L, Cai JM, Lin H, Du SX, Lin F, Seidel C, Chi LF, Hofer WA, Fuchs H, Gao HJ. Phys Rev Lett, 2006, 96: 226101 CrossRef PubMed ADS Google Scholar

[57] Cun H, Wang Y, Du S, Zhang L, Zhang L, Yang B, He X, Wang Y, Zhu X, Yuan Q, Zhao YP, Ouyang M, Hofer WA, Pennycook SJ, Gao HJ. Nano Lett, 2012, 12: 1229-1234 CrossRef PubMed ADS Google Scholar

[58] Yang B, Wang Y, Cun H, Du S, Xu M, Wang Y, Ernst KH, Gao HJ. J Am Chem Soc, 2010, 132: 10440-10444 CrossRef PubMed Google Scholar

[59] Shao X, Luo X, Hu X, Wu K. J Phys Chem B, 2006, 110: 15393-15402 CrossRef PubMed Google Scholar

[60] Xu X, Yin J, Li H, Zhou Y, Li J, Pei J, Wu K. J Phys Chem C, 2009, 113: 8844-8852 CrossRef Google Scholar

[61] Gutzler R, Ivasenko O, Fu C, Brusso JL, Rosei F, Perepichka DF. Chem Commun, 2011, 47: 9453-9455 CrossRef PubMed Google Scholar

[62] Hu X, Zha B, Wu Y, Miao X, Deng W. Phys Chem Chem Phys, 2016, 18: 7208-7215 CrossRef PubMed ADS Google Scholar

[63] Zheng QN, Liu XH, Chen T, Yan HJ, Cook T, Wang D, Stang PJ, Wan LJ. J Am Chem Soc, 2015, 137: 6128-6131 CrossRef PubMed Google Scholar

[64] Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G. Angew Chem Int Ed, 2008, 47: 6114-6127 CrossRef PubMed Google Scholar

[65] Wagner C, Kasemann D, Golnik C, Forker R, Esslinger M, Müllen K, Fritz T. Phys Rev B, 2010, 81: 035423 CrossRef ADS Google Scholar

[66] Zhang Y, Zhang Y, Li G, Lu J, Lin X, Tan Y, Feng X, Du S, Müllen K, Gao HJ. J Chem Phys, 2015, 142: 101911 CrossRef PubMed ADS Google Scholar

[67] Gutzler R, Fu C, Dadvand A, Hua Y, MacLeod JM, Rosei F, Perepichka DF. Nanoscale, 2012, 4: 5965-5971 CrossRef PubMed Google Scholar

[68] Bui TTT, Dahaoui S, Lecomte C, Desiraju GR, Espinosa E. Angew Chem Int Ed, 2009, 48: 3838-3841 CrossRef PubMed Google Scholar

[69] Liu J, Lin T, Shi Z, Xia F, Dong L, Liu PN, Lin N. J Am Chem Soc, 2011, 133: 18760-18766 CrossRef PubMed Google Scholar

[70] Zhang H, Franke JH, Zhong D, Li Y, Timmer A, Arado OD, Mönig H, Wang H, Chi L, Wang Z, Müllen K, Fuchs H. Small, 2014, 10: 1361-1368 CrossRef PubMed Google Scholar

[71] Cai L, Sun Q, Bao M, Ma H, Yuan C, Xu W. ACS Nano, 2017, 11: 3727-3732 CrossRef Google Scholar

[72] Björk J, Matena M, Dyer MS, Enache M, Lobo-Checa J, Gade LH, Jung TA, Stöhr M, Persson M. Phys Chem Chem Phys, 2010, 12: 8815-8821 CrossRef PubMed ADS Google Scholar

[73] Langner A, Tait SL, Lin N, Chandrasekar R, Ruben M, Kern K. Angew Chem Int Ed, 2008, 47: 8835-8838 CrossRef PubMed Google Scholar

[74] Ren J, Larkin E, Delaney C, Song Y, Jin X, Amirjalayer S, Bakker A, Du S, Gao H, Zhang YY, Draper SM, Fuchs H. Chem Commun, 2018, 54: 9305-9308 CrossRef PubMed Google Scholar

[75] Xu W, Wang J, Yu M, Laegsgaard E, Stensgaard I, Linderoth TR, Hammer B, Wang C, Besenbacher F. J Am Chem Soc, 2010, 132: 15927-15929 CrossRef PubMed Google Scholar

[76] Lu J, Bao DL, Dong H, Qian K, Zhang S, Liu J, Zhang Y, Lin X, Du SX, Hu W, Gao HJ. J Phys Chem Lett, 2017, 8: 326-331 CrossRef PubMed Google Scholar

[77] Gilday LC, Robinson SW, Barendt TA, Langton MJ, Mullaney BR, Beer PD. Chem Rev, 2015, 115: 7118-7195 CrossRef PubMed Google Scholar

[78] Xie L, Zhang C, Ding Y, Xu W. Angew Chem Int Ed, 2017, 56: 5077-5081 CrossRef PubMed Google Scholar

[79] Wang L, Kong H, Zhang C, Sun Q, Cai L, Tan Q, Besenbacher F, Xu W. ACS Nano, 2014, 8: 11799-11805 CrossRef PubMed Google Scholar

[80] Zhang C, Xie L, Wang L, Kong H, Tan Q, Xu W. J Am Chem Soc, 2015, 137: 11795-11800 CrossRef PubMed Google Scholar

[81] Xie L, Zhang C, Ding Y, E W, Yuan C, Xu W. Chem Commun, 2017, 53: 8767-8769 CrossRef PubMed Google Scholar

  • Figure 1

    Adsorption and self-assemble pattern of FePc molecules on a Au(111) surface [31]. (a) STM image of FePc molecules on Au(111) at low coverage (14 nm×14 nm). (b) Atomic structures of the two stable adsorption configurations for FePc molecules on Au(111). (c) STM image of typical molecular aggregations with an increased coverage (20 nm×20 nm). (d) STM image to show the self-assembly pattern of FePc on Au(111) at full coverage (6 nm×6 nm). (e) The atomic model of the self-assembly pattern of FePc on Au(111) (color online).

  • Figure 2

    Adsorption energy of different configurations of FePc on a Au(111) surface [32] (color online).

  • Figure 3

    Adsorption and self-assemble pattern of FePc molecules on a Gr/Ru(0001) surface. (a) The atomic structure of graphene on Ru(0001) [42]. (b) An STM image of three distinct regions, top, fcc, and hcp, marked by triangles and dashed and solid hexagons [43]. (c) A perspective view of the inhomogeneous lateral dipole moments of Gr/Ru(0001) [43]. Color arrows highlight different orientations and magnitudes. (d) An STM image of FePc molecules adsorbed at fcc regions at low coverage [43]. (c) An STM image of FePc molecules with an increased coverage. (d) Kagome lattice of FePc on Gr/Ru(0001) [46] (color online).

  • Figure 4

    Adsorption and self-assemble pattern of QAnC molecules on Ag(110) surface [56]. (a) Several typical adsorption configurations and the corresponding adsorption energy of the functional core of QAnC on Ag(110). (b) Calculated angle between two alkyl chains as a function of the number of carbon atoms. (c) Side views of the predicted structures of QAnC with different alkyl chains on six layers of Ag(110). (d, e) Predicted atomic structures of QA4C and QA16C monolayers on Ag(110). (f, g) STM images of QA4C and QA16C which are in perfect agreement with the predictions in (d) and (e). The simulated STM image is in (f) (color online).

  • Figure 5

    Self-assemble pattern of QA16C molecules on Ag(110) surface at different coverage [57]. (a) Eight molecular configurations of QA16C on Ag(110). (b) The plot of strain energy density (U) as a function of strain (ε) for the corresponding structure from I to VIII. The fitted solid line gives an estimated Young’s modulus of 0.92±0.08 GPa. (c, d) Molecular interactions and total energy calculations. (c) Total energy per molecule as a function of the superstructure. (d) Total energy per unit area as a function of the superstructure (color online).

  • Figure 6

    Self-assemble pattern and the chirality of QA16C molecules on a Au(111) surface [58]. (a) Atomic structures of QA16C enantiomers with a mirror symmetry. (b) The atomic model of close-packed layers with a heterochiral arrangement. (c) The atomic model of close-packed layers homochiral arrangement. (d~f) STM images of QA16C molecules on Au(111) for different coverages. (d) Homochiral R-lamella structure. (e) Coexistence of lamella and intermediate structures. (f) Racemic saturation structure (color online).

  • Figure 7

    Self-assemble pattern of HBC and PCHBC molecules on Au(111) surface. (a, c) The atomic structure of a HBC molecule and an STM image of HBC on Au(111) [65]. (b, d) The atomic structure of a PCHBC molecule and an STM image of PCHBC on Au(111) [66]. (e) Simulated STM image of PCHBC molecule. (f) The calculated electron-density difference of the PCHBC molecule [66]. Red and blue indicate the distribution of positive charge and negative charge, respectively. (g) Halogen bonds in the close packed networks of PCHBC [66]. The red and blue dashed lines indicate the different Cl–Cl bonds (color online).

  • Figure 8

    Molecular network of self-assembled DPA on a Ag(111) surface with and without atomic-bromine [76]. (a, f) The atomic structure and a large-scale STM image of DPA self-assembled structure without atomic-bromine. (b–e) Atomic configurations of four different Br-DPA networks with atomic-bromines. The ratio of Br atoms and DPA molecules is 3:1, 5:3, 4:3 and 1:3, respectively. (g–j) Large-scale STM images of Br-DPA networks of Structure I, II, III and IV (color online).

  • Figure 9

    Various Br-organic molecule networks on different metal substrates [76]. (a) A large-scale STM image of Br-DPA network on Cu(111). (b) An STM image and corresponding simulated STM image of Br-DPA on Cu(111). (c) An STM image of Br-DcC6PA network on Ag(111). (d, e) Calculated electron density difference of the Br-DPA networks on Ag(111) and Cu(111). Red and blue parts indicate the distribution of electron depletion and accumulation, respectively. The black dashed lines represent the possible –C–H···Br hydrogen bonds between DPA molecules and Br atoms. (f) The atomic structure of Br-DcC6PA network on Ag(111). The red circles with a cross inside indicate positions where the Br atoms cannot reside because of the space limitation (color online).

  • Figure 10

    Self-assembled structures constructed by G molecules, nickel atoms and iodine atoms [78]. (a–c) Large-scale STM images showing different structures of G3Ni1, G2Ni2 and G3Ni3. (e–g) The high-resolution STM images and atomic structures corresponding to (a–c). (d) Honeycomb network structure composed of G3Ni3I3 after doping iodine. (h) The high-resolution image and atomic structure of (d) (color online).

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号