SCIENTIA SINICA Chimica, Volume 49 , Issue 5 : 692-703(2019) https://doi.org/10.1360/N032018-00230

Recent progress in electrospinning method for secondary ion batteries and electrocatalysis

More info
  • ReceivedOct 26, 2018
  • AcceptedDec 24, 2018
  • PublishedFeb 27, 2019


Electrospinning method is a versatile technique to prepare various one-dimensional (1D) carbon-containing composite nanofibers, which possesses the advantages of controllable operation and objective output. As-prepared 1D composites significantly improves the ionic and electronic transport. Therefore, electrospinning method is widely applied in secondary ion batteries and electrocatalysis. Herein, we introduce the principle of electrospinning technology and its application in the field of batteries and electrocatalysis make a reasonable discussion on the current problems and point out the development direction of electrospinning method. This review may provide a helpful guide for the design and preparation of advanced energy materials.

Funded by



Interest statement

These authors contributed equally to this work.


[1] Chu S, Majumdar A. Nature, 2012, 488: 294-303 CrossRef PubMed ADS Google Scholar

[2] Larcher D, Tarascon JM. Nat Chem, 2015, 7: 19-29 CrossRef PubMed ADS Google Scholar

[3] Winter M, Brodd RJ. Chem Rev, 2004, 104: 4245-4270 CrossRef Google Scholar

[4] Chen J, Cheng F. Acc Chem Res, 2009, 42: 713-723 CrossRef PubMed Google Scholar

[5] Zhang Q, Uchaker E, Candelaria SL, Cao G. Chem Soc Rev, 2013, 42: 3127-3171 CrossRef PubMed Google Scholar

[6] Lu X, Wang C, Favier F, Pinna N. Adv Energy Mater, 2017, 7: 1601301 CrossRef Google Scholar

[7] Taylor G. Proc Soc R London, Ser A, 1964, 280. Google Scholar

[8] Li W, Zeng L, Yang Z, Gu L, Wang J, Liu X, Cheng J, Yu Y. Nanoscale, 2014, 6: 693-698 CrossRef PubMed ADS Google Scholar

[9] Wang S, Xia L, Yu L, Zhang L, Wang H, Lou XWD. Adv Energy Mater, 2016, 6: 1502217 CrossRef Google Scholar

[10] Zhu J, Chen C, Lu Y, Ge Y, Jiang H, Fu K, Zhang X. Carbon, 2015, 94: 189-195 CrossRef Google Scholar

[11] Liu Y, Zhang N, Jiao L, Chen J. Adv Mater, 2015, 27: 6702-6707 CrossRef PubMed Google Scholar

[12] Yin H, Li Q, Cao M, Zhang W, Zhao H, Li C, Huo K, Zhu M. Nano Res, 2017, 10: 2156-2167 CrossRef Google Scholar

[13] Li W, Yang Z, Cheng J, Zhong X, Gu L, Yu Y. Nanoscale, 2014, 6: 4532-4537 CrossRef PubMed ADS Google Scholar

[14] Zhu Y, Han X, Xu Y, Liu Y, Zheng S, Xu K, Hu L, Wang C. ACS Nano, 2013, 7: 6378-6386 CrossRef PubMed Google Scholar

[15] Wu L, Hu X, Qian J, Pei F, Wu F, Mao R, Ai X, Yang H, Cao Y. Energy Environ Sci, 2014, 7: 323-328 CrossRef Google Scholar

[16] Chen C, Fu K, Lu Y, Zhu J, Xue L, Hu Y, Zhang X. RSC Adv, 2015, 5: 30793-30800 CrossRef Google Scholar

[17] Xue L, Xia X, Tucker T, Fu K, Zhang S, Li S, Zhang X. J Mater Chem A, 2013, 1: 13807-13813 CrossRef Google Scholar

[18] Shin J, Ryu WH, Park KS, Kim ID. ACS Nano, 2013, 7: 7330-7341 CrossRef PubMed Google Scholar

[19] Wang X, Liu Y, Wang Y, Jiao L. Small, 2016, 12: 4865-4872 CrossRef PubMed Google Scholar

[20] Yan C, Chen G, Zhou X, Sun J, Lv C. Adv Funct Mater, 2016, 26: 1428-1436 CrossRef Google Scholar

[21] Qin X, Zhang H, Wu J, Chu X, He YB, Han C, Miao C, Wang S, Li B, Kang F. Carbon, 2015, 87: 347-356 CrossRef Google Scholar

[22] Han H, Song T, Bae JY, Nazar LF, Kim H, Paik U. Energy Environ Sci, 2011, 4: 4532-4536 CrossRef Google Scholar

[23] Cao K, Liu H, Xu X, Wang Y, Jiao L. Chem Commun, 2016, 52: 11414-11417 CrossRef PubMed Google Scholar

[24] Liu Y, Zhang N, Yu C, Jiao L, Chen J. Nano Lett, 2016, 16: 3321-3328 CrossRef PubMed ADS Google Scholar

[25] Wang X, Cao K, Wang Y, Jiao L. Small, 2017, 13: 1700873 CrossRef PubMed Google Scholar

[26] Zhu C, Mu X, van Aken PA, Yu Y, Maier J. Angew Chem Int Ed, 2014, 53: 2152-2156 CrossRef PubMed Google Scholar

[27] Cho JS, Park JS, Kang YC. Nano Res, 2017, 10: 897-907 CrossRef Google Scholar

[28] Zhu Y, Fan X, Suo L, Luo C, Gao T, Wang C. ACS Nano, 2016, 10: 1529-1538 CrossRef Google Scholar

[29] Ni Q, Bai Y, Wu F, Wu C. Adv Sci, 2017, 4: 1600275 CrossRef PubMed Google Scholar

[30] Jin T, Liu Y, Li Y, Cao K, Wang X, Jiao L. Adv Energy Mater, 2017, 7: 1700087 CrossRef Google Scholar

[31] Yu T, Lin B, Li Q, Wang X, Qu W, Zhang S, Deng C. Phys Chem Chem Phys, 2016, 18: 26933-26941 CrossRef PubMed ADS Google Scholar

[32] Ni Q, Bai Y, Li Y, Ling L, Li L, Chen G, Wang Z, Ren H, Wu F, Wu C. Small, 2018, 1702864. Google Scholar

[33] Yan D, Li Y, Huo J, Chen R, Dai L, Wang S. Adv Mater, 2017, 29: 1606459 CrossRef PubMed Google Scholar

[34] Guo C, Zheng Y, Ran J, Xie F, Jaroniec M, Qiao SZ. Angew Chem Int Ed, 2017, 56: 8539-8543 CrossRef PubMed Google Scholar

[35] Jung JW, Lee CL, Yu S, Kim ID. J Mater Chem A, 2016, 4: 703-750 CrossRef Google Scholar

[36] Lei Y, Shi Q, Han C, Wang B, Wu N, Wang H, Wang Y. Nano Res, 2016, 9: 2498-2509 CrossRef Google Scholar

[37] Shi Q, Lei Y, Wang Y, Wang H, Jiang L, Yuan H, Fang D, Wang B, Wu N, Gou Y. Curr Appl Phys, 2015, 15: 1606-1614 CrossRef ADS Google Scholar

[38] Yan X, Jia Y, Yao X. Chem Soc Rev, 2018, 47: 7628-7658 CrossRef PubMed Google Scholar

[39] Liu Z, Zhao Z, Wang Y, Dou S, Yan D, Liu D, Xia Z, Wang S. Adv Mater, 2017, 29: 1606207 CrossRef PubMed Google Scholar

[40] Zhao Y, Lai Q, Wang Y, Zhu J, Liang Y. ACS Appl Mater Interfaces, 2017, 9: 16178-16186 CrossRef Google Scholar

[41] Wu M, Wang Y, Wei Z, Wang L, Zhuo M, Zhang J, Han X, Ma J. J Mater Chem A, 2018, 6: 10918-10925 CrossRef Google Scholar

[42] Han L, Dong S, Wang E. Adv Mater, 2016, 28: 9266-9291 CrossRef PubMed Google Scholar

[43] Shi Q, Wang Y, Wang Z, Lei Y, Wang B, Wu N, Han C, Xie S, Gou Y. Nano Res, 2016, 9: 317-328 CrossRef Google Scholar

[44] Wu N, Wang Y, Lei Y, Wang B, Han C, Gou Y, Shi Q, Fang D. Sci Rep, 2015, 5: 17396 CrossRef PubMed ADS Google Scholar

[45] Zhao Y, Lai Q, Zhu J, Zhong J, Tang Z, Luo Y, Liang Y. Small, 2018, 14: 1704207 CrossRef PubMed Google Scholar

[46] Fu Y, Yu HY, Jiang C, Zhang TH, Zhan R, Li X, Li JF, Tian JH, Yang R. Adv Funct Mater, 2018, 28: 1705094 CrossRef Google Scholar

[47] Chen JY, Niu QJ, Chen GK, Nie J, Ma GP. J Phys Chem C, 2017, 121: 1463-1471 CrossRef Google Scholar

[48] Ji D, Peng S, Safanama D, Yu H, Li L, Yang G, Qin X, Srinivasan M, Adams S, Ramakrishna S. Chem Mater, 2017, 29: 1665-1675 CrossRef Google Scholar

[49] Li Y, Chen S, Xi D, Bo Y, Long R, Wang C, Song L, Xiong Y. Small, 2018, 14: 1702109 CrossRef PubMed Google Scholar

[50] Zhao X, Li F, Wang R, Seo JM, Choi HJ, Jung SM, Mahmood J, Jeon IY, Baek JB. Adv Funct Mater, 2017, 27: 1605717 CrossRef Google Scholar

[51] Tang H, Chen W, Wang J, Dugger T, Cruz L, Kisailus D. Small, 2018, 14: 1703459 CrossRef PubMed Google Scholar

[52] Wang X, Li Y, Jin T, Meng J, Jiao L, Zhu M, Chen J. Nano Lett, 2017, 17: 7989-7994 CrossRef PubMed ADS Google Scholar

[53] Peng S, Han X, Li L, Chou S, Ji D, Huang H, Du Y, Liu J, Ramakrishna S. Adv Energy Mater, 2018, 8: 1800612 CrossRef Google Scholar

[54] Levy RB, Boudart M. Science, 1973, 181: 547-549 CrossRef PubMed ADS Google Scholar

[55] Zhao Y, Zhang J, Guo X, Fan H, Wu W, Liu H, Wang G. J Mater Chem A, 2017, 5: 19672-19679 CrossRef Google Scholar

[56] Ma T, Bai J, Wang Q, Li C. Dalton Trans, 2018, 47: 10240-10248 CrossRef PubMed Google Scholar

[57] Li M, Liu T, Bo X, Zhou M, Guo L, Guo S. Nano Energy, 2017, 33: 221-228 CrossRef Google Scholar

[58] Li Y, Li H, Cao K, Jin T, Wang X, Sun H, Ning J, Wang Y, Jiao L. Energy Storage Mater, 2018, 12: 44-53 CrossRef Google Scholar

[59] Wang MQ, Ye C, Liu H, Xu M, Bao SJ. Angew Chem Int Ed, 2018, 57: 1963-1967 CrossRef PubMed Google Scholar

  • Figure 1

    Schematic illustration of the general laboratory setup for electrospinning and three typical nozzles [6] (color online).

  • Figure 2

    (a) Schematic illustration of the fabrication of N-CNF. (b) Scanning electron microscopy (SEM) image and (c) energy dispersive spectrometer EDS mapping images of N-CNF. (d) High-resolution XPS N 1s spectrum of N-CNF. (e) Rate performance of N-CNF [9] (color online).

  • Figure 3

    (a) SEM and (b) HRTEM images of Sn NDs@PNC nanofibers. (c) Rate capability and cycling performance of Sn NDs@PNC with different carbon contents, inset: SEM, TEM, and HRTEM images of Sn NDs@PNC after 300 cycles [11]. TEM images of (d) SnCo/PVP-CNFs and (e) SnCo/PAN-CNFs. (f) Charge/discharge cycle performance of the SnCo/PVP-CNFs and the SnCo/PAN-CNFs, insets are morphological evolutions of the SnCo/PVP-CNFs and SnCo/PAN-CNFs in terms of the SEI layer growth and the structure changes [18] (color online).

  • Figure 4

    Schematic illustrations of the preparation processes of the TiO2 nanofibers, TiO2 hollow nanofibers, and nitridated TiO2 hollow nanofibers. TEM images of (b) TiO2 hollow nanofibers and (c) nitridated TiO2 hollow nanofibers. (d) Specific capacity of TiO2 nanofibers, TiO2 hollow nanofibers, and nitridated TiO2 hollow nanofibers at different current densities [22]. TEM images of (e) 3-CCO@C and (f) 10-CCO@C. (g) Schematic illustration for reaction mechanism of 3-CCO@C composite [25] (color online).

  • Figure 5

    (a) The formation process of the porous FeS nanofibers. (b) Detailed mechanism for the formation of porous FeS nanofibers [27]. (c) TEM images of single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers [26]. (d) Schematic illustration of the formation process for NaVPO4F/C nanofibers. (e) TEM image of NaVPO4F/C nanofibers. (f) Rate capability of NaVPO4F/C with different carbon contents [30] (color online).

  • Figure 6

    (a) SEM image of HP-Fe-N/CNFs. (b) Schematic illustration of interconnected hierarchical porous fibers with enhanced ORR catalytic activity. (c) Polarization and power-density curves of the Zn-air batteries using Fe-N/CNFs, HP-Fe-N/CNFs, and 30 wt% Pt/C as ORR catalysts [40]. (d) TEM and EDS mapping images of the as-synthesized NFPC. (e) Schematic illustration of the assembled Zn-air battery using NFPC as the air catalyst. (f) Cycling curves of the batteries based on NFPC, Vulcan XC-72 and Pt/C+RuO2 as air cathodes at a current density of 10 mA cm−2, respectively [41] (color online).

  • Figure 7

    (a) Schematic illustration of morphology evolution in PAN@ZIF-67 fiber. (b) Discharge polarization and power density curves of the Zn-air batteries using CNF@ZnNC, CNF@Zn/CoNC, CNF@CoNC, and 30 wt% Pt/C as ORR catalyst [45]. (c) TEM image of NiCo@N-C [46]. (d) Simplified reaction pathway for complete oxidation of CH3OH over Pt/Ni/CNFs [47]. (e) The photo of MNO-CNT-CNFFs [48]. (f) Comparison of voltage gap between charge-discharge voltage plateaus of hybrid Li-air batteries with different catalysts. (g) The cycling performance of hybrid Li-air battery using FeNO-CNT-CNFF as the air electrode [48]. (h) Synthetic schematic of ESC@FNPO [49] (color online).

  • Figure 8

    (a) Schematic illustration of the preparation process for CuCo2O4@C nanotubes. (b) TEM image of CuCo2O4@C. (c) Galvanostatic discharge-charge cycling curves at 2 mA cm−2 using CuCo2O4@C and Pt/C+IrO2 as air electrodes, and the optical images of an LED illuminated using CCO@C as air electrodes (inset) [52]. (d) Scheme of the formation of CMO/S. (e) DFT calculation of DOS of CMO. (f) Galvanostatic pulse cycling at 5 mA cm−2 with a duration of 400 s per cycle of CMO/S-300 [53] (color online).

  • Figure 9

    (a) SEM image of Fe3C@NCNTs-NCNFs. (b) Polarization curves of the catalysts in 1 M KOH solution for OER [55]. (c) The formation process of GCNTs. (d) LSV curves for GCNTs, BCN and IrO2 catalysts for OER [56]. (e) Schematic illustration of the sequential fabrication step for the Co/CoP@NC nanofibers. Polarization curves for Co/CoP@NC nanofibers initially and after 3000, 5000, 10000 CV cycles in (f) 0.5 M H2SO4 and (g) 1 M KOH aqueous solution, respectively [58]. (h) TEM image of as-prepared Ni2P@NPCNFs. (i) Illustration of the enhanced HER process over Ni2P@NPCNFs. (j) SEM images of Ni2P@NPCNFs, Fe2P@NPCNFs, Co2P@NPCNFs和Cu3P@NPCNFs [59] (color online).