Electrospinning method is a versatile technique to prepare various one-dimensional (1D) carbon-containing composite nanofibers, which possesses the advantages of controllable operation and objective output. As-prepared 1D composites significantly improves the ionic and electronic transport. Therefore, electrospinning method is widely applied in secondary ion batteries and electrocatalysis. Herein, we introduce the principle of electrospinning technology and its application in the field of batteries and electrocatalysis make a reasonable discussion on the current problems and point out the development direction of electrospinning method. This review may provide a helpful guide for the design and preparation of advanced energy materials.
国家重点研发计划(2017YFA0206702,2016YFB0901502)
国家自然科学基金(51622102,21421001)
These authors contributed equally to this work.
[1] Chu S, Majumdar A. Nature, 2012, 488: 294-303 CrossRef PubMed ADS Google Scholar
[2] Larcher D, Tarascon JM. Nat Chem, 2015, 7: 19-29 CrossRef PubMed ADS Google Scholar
[3] Winter M, Brodd RJ. Chem Rev, 2004, 104: 4245-4270 CrossRef Google Scholar
[4] Chen J, Cheng F. Acc Chem Res, 2009, 42: 713-723 CrossRef PubMed Google Scholar
[5] Zhang Q, Uchaker E, Candelaria SL, Cao G. Chem Soc Rev, 2013, 42: 3127-3171 CrossRef PubMed Google Scholar
[6] Lu X, Wang C, Favier F, Pinna N. Adv Energy Mater, 2017, 7: 1601301 CrossRef Google Scholar
[7]
Taylor G.
[8] Li W, Zeng L, Yang Z, Gu L, Wang J, Liu X, Cheng J, Yu Y. Nanoscale, 2014, 6: 693-698 CrossRef PubMed ADS Google Scholar
[9] Wang S, Xia L, Yu L, Zhang L, Wang H, Lou XWD. Adv Energy Mater, 2016, 6: 1502217 CrossRef Google Scholar
[10] Zhu J, Chen C, Lu Y, Ge Y, Jiang H, Fu K, Zhang X. Carbon, 2015, 94: 189-195 CrossRef Google Scholar
[11] Liu Y, Zhang N, Jiao L, Chen J. Adv Mater, 2015, 27: 6702-6707 CrossRef PubMed Google Scholar
[12] Yin H, Li Q, Cao M, Zhang W, Zhao H, Li C, Huo K, Zhu M. Nano Res, 2017, 10: 2156-2167 CrossRef Google Scholar
[13] Li W, Yang Z, Cheng J, Zhong X, Gu L, Yu Y. Nanoscale, 2014, 6: 4532-4537 CrossRef PubMed ADS Google Scholar
[14] Zhu Y, Han X, Xu Y, Liu Y, Zheng S, Xu K, Hu L, Wang C. ACS Nano, 2013, 7: 6378-6386 CrossRef PubMed Google Scholar
[15] Wu L, Hu X, Qian J, Pei F, Wu F, Mao R, Ai X, Yang H, Cao Y. Energy Environ Sci, 2014, 7: 323-328 CrossRef Google Scholar
[16] Chen C, Fu K, Lu Y, Zhu J, Xue L, Hu Y, Zhang X. RSC Adv, 2015, 5: 30793-30800 CrossRef Google Scholar
[17] Xue L, Xia X, Tucker T, Fu K, Zhang S, Li S, Zhang X. J Mater Chem A, 2013, 1: 13807-13813 CrossRef Google Scholar
[18] Shin J, Ryu WH, Park KS, Kim ID. ACS Nano, 2013, 7: 7330-7341 CrossRef PubMed Google Scholar
[19] Wang X, Liu Y, Wang Y, Jiao L. Small, 2016, 12: 4865-4872 CrossRef PubMed Google Scholar
[20] Yan C, Chen G, Zhou X, Sun J, Lv C. Adv Funct Mater, 2016, 26: 1428-1436 CrossRef Google Scholar
[21] Qin X, Zhang H, Wu J, Chu X, He YB, Han C, Miao C, Wang S, Li B, Kang F. Carbon, 2015, 87: 347-356 CrossRef Google Scholar
[22] Han H, Song T, Bae JY, Nazar LF, Kim H, Paik U. Energy Environ Sci, 2011, 4: 4532-4536 CrossRef Google Scholar
[23] Cao K, Liu H, Xu X, Wang Y, Jiao L. Chem Commun, 2016, 52: 11414-11417 CrossRef PubMed Google Scholar
[24] Liu Y, Zhang N, Yu C, Jiao L, Chen J. Nano Lett, 2016, 16: 3321-3328 CrossRef PubMed ADS Google Scholar
[25] Wang X, Cao K, Wang Y, Jiao L. Small, 2017, 13: 1700873 CrossRef PubMed Google Scholar
[26] Zhu C, Mu X, van Aken PA, Yu Y, Maier J. Angew Chem Int Ed, 2014, 53: 2152-2156 CrossRef PubMed Google Scholar
[27] Cho JS, Park JS, Kang YC. Nano Res, 2017, 10: 897-907 CrossRef Google Scholar
[28] Zhu Y, Fan X, Suo L, Luo C, Gao T, Wang C. ACS Nano, 2016, 10: 1529-1538 CrossRef Google Scholar
[29] Ni Q, Bai Y, Wu F, Wu C. Adv Sci, 2017, 4: 1600275 CrossRef PubMed Google Scholar
[30] Jin T, Liu Y, Li Y, Cao K, Wang X, Jiao L. Adv Energy Mater, 2017, 7: 1700087 CrossRef Google Scholar
[31] Yu T, Lin B, Li Q, Wang X, Qu W, Zhang S, Deng C. Phys Chem Chem Phys, 2016, 18: 26933-26941 CrossRef PubMed ADS Google Scholar
[32]
Ni Q, Bai Y, Li Y, Ling L, Li L, Chen G, Wang Z, Ren H, Wu F, Wu C.
[33] Yan D, Li Y, Huo J, Chen R, Dai L, Wang S. Adv Mater, 2017, 29: 1606459 CrossRef PubMed Google Scholar
[34] Guo C, Zheng Y, Ran J, Xie F, Jaroniec M, Qiao SZ. Angew Chem Int Ed, 2017, 56: 8539-8543 CrossRef PubMed Google Scholar
[35] Jung JW, Lee CL, Yu S, Kim ID. J Mater Chem A, 2016, 4: 703-750 CrossRef Google Scholar
[36] Lei Y, Shi Q, Han C, Wang B, Wu N, Wang H, Wang Y. Nano Res, 2016, 9: 2498-2509 CrossRef Google Scholar
[37] Shi Q, Lei Y, Wang Y, Wang H, Jiang L, Yuan H, Fang D, Wang B, Wu N, Gou Y. Curr Appl Phys, 2015, 15: 1606-1614 CrossRef ADS Google Scholar
[38] Yan X, Jia Y, Yao X. Chem Soc Rev, 2018, 47: 7628-7658 CrossRef PubMed Google Scholar
[39] Liu Z, Zhao Z, Wang Y, Dou S, Yan D, Liu D, Xia Z, Wang S. Adv Mater, 2017, 29: 1606207 CrossRef PubMed Google Scholar
[40] Zhao Y, Lai Q, Wang Y, Zhu J, Liang Y. ACS Appl Mater Interfaces, 2017, 9: 16178-16186 CrossRef Google Scholar
[41] Wu M, Wang Y, Wei Z, Wang L, Zhuo M, Zhang J, Han X, Ma J. J Mater Chem A, 2018, 6: 10918-10925 CrossRef Google Scholar
[42] Han L, Dong S, Wang E. Adv Mater, 2016, 28: 9266-9291 CrossRef PubMed Google Scholar
[43] Shi Q, Wang Y, Wang Z, Lei Y, Wang B, Wu N, Han C, Xie S, Gou Y. Nano Res, 2016, 9: 317-328 CrossRef Google Scholar
[44] Wu N, Wang Y, Lei Y, Wang B, Han C, Gou Y, Shi Q, Fang D. Sci Rep, 2015, 5: 17396 CrossRef PubMed ADS Google Scholar
[45] Zhao Y, Lai Q, Zhu J, Zhong J, Tang Z, Luo Y, Liang Y. Small, 2018, 14: 1704207 CrossRef PubMed Google Scholar
[46] Fu Y, Yu HY, Jiang C, Zhang TH, Zhan R, Li X, Li JF, Tian JH, Yang R. Adv Funct Mater, 2018, 28: 1705094 CrossRef Google Scholar
[47] Chen JY, Niu QJ, Chen GK, Nie J, Ma GP. J Phys Chem C, 2017, 121: 1463-1471 CrossRef Google Scholar
[48] Ji D, Peng S, Safanama D, Yu H, Li L, Yang G, Qin X, Srinivasan M, Adams S, Ramakrishna S. Chem Mater, 2017, 29: 1665-1675 CrossRef Google Scholar
[49] Li Y, Chen S, Xi D, Bo Y, Long R, Wang C, Song L, Xiong Y. Small, 2018, 14: 1702109 CrossRef PubMed Google Scholar
[50] Zhao X, Li F, Wang R, Seo JM, Choi HJ, Jung SM, Mahmood J, Jeon IY, Baek JB. Adv Funct Mater, 2017, 27: 1605717 CrossRef Google Scholar
[51] Tang H, Chen W, Wang J, Dugger T, Cruz L, Kisailus D. Small, 2018, 14: 1703459 CrossRef PubMed Google Scholar
[52] Wang X, Li Y, Jin T, Meng J, Jiao L, Zhu M, Chen J. Nano Lett, 2017, 17: 7989-7994 CrossRef PubMed ADS Google Scholar
[53] Peng S, Han X, Li L, Chou S, Ji D, Huang H, Du Y, Liu J, Ramakrishna S. Adv Energy Mater, 2018, 8: 1800612 CrossRef Google Scholar
[54] Levy RB, Boudart M. Science, 1973, 181: 547-549 CrossRef PubMed ADS Google Scholar
[55] Zhao Y, Zhang J, Guo X, Fan H, Wu W, Liu H, Wang G. J Mater Chem A, 2017, 5: 19672-19679 CrossRef Google Scholar
[56] Ma T, Bai J, Wang Q, Li C. Dalton Trans, 2018, 47: 10240-10248 CrossRef PubMed Google Scholar
[57] Li M, Liu T, Bo X, Zhou M, Guo L, Guo S. Nano Energy, 2017, 33: 221-228 CrossRef Google Scholar
[58] Li Y, Li H, Cao K, Jin T, Wang X, Sun H, Ning J, Wang Y, Jiao L. Energy Storage Mater, 2018, 12: 44-53 CrossRef Google Scholar
[59] Wang MQ, Ye C, Liu H, Xu M, Bao SJ. Angew Chem Int Ed, 2018, 57: 1963-1967 CrossRef PubMed Google Scholar
Figure 1
Schematic illustration of the general laboratory setup for electrospinning and three typical nozzles
Figure 2
(a) Schematic illustration of the fabrication of N-CNF. (b) Scanning electron microscopy (SEM) image and (c) energy dispersive spectrometer EDS mapping images of N-CNF. (d) High-resolution XPS N 1s spectrum of N-CNF. (e) Rate performance of N-CNF
Figure 3
(a) SEM and (b) HRTEM images of Sn NDs@PNC nanofibers. (c) Rate capability and cycling performance of Sn NDs@PNC with different carbon contents, inset: SEM, TEM, and HRTEM images of Sn NDs@PNC after 300 cycles
Figure 4
Schematic illustrations of the preparation processes of the TiO2 nanofibers, TiO2 hollow nanofibers, and nitridated TiO2 hollow nanofibers. TEM images of (b) TiO2 hollow nanofibers and (c) nitridated TiO2 hollow nanofibers. (d) Specific capacity of TiO2 nanofibers, TiO2 hollow nanofibers, and nitridated TiO2 hollow nanofibers at different current densities
Figure 5
(a) The formation process of the porous FeS nanofibers. (b) Detailed mechanism for the formation of porous FeS nanofibers
Figure 6
(a) SEM image of HP-Fe-N/CNFs. (b) Schematic illustration of interconnected hierarchical porous fibers with enhanced ORR catalytic activity. (c) Polarization and power-density curves of the Zn-air batteries using Fe-N/CNFs, HP-Fe-N/CNFs, and 30 wt% Pt/C as ORR catalysts
Figure 7
(a) Schematic illustration of morphology evolution in PAN@ZIF-67 fiber. (b) Discharge polarization and power density curves of the Zn-air batteries using CNF@ZnNC, CNF@Zn/CoNC, CNF@CoNC, and 30 wt% Pt/C as ORR catalyst
Figure 8
(a) Schematic illustration of the preparation process for CuCo2O4@C nanotubes. (b) TEM image of CuCo2O4@C. (c) Galvanostatic discharge-charge cycling curves at
Figure 9
(a) SEM image of Fe3C@NCNTs-NCNFs. (b) Polarization curves of the catalysts in 1 M KOH solution for OER