logo

SCIENTIA SINICA Chimica, Volume 49 , Issue 5 : 811-820(2019) https://doi.org/10.1360/N032018-00234

Supramolecular medicine of calixarenes

More info
  • ReceivedOct 29, 2018
  • AcceptedDec 4, 2018
  • PublishedFeb 27, 2019

Abstract


Funded by

国家自然科学基金(51873090,21672112)

中央高校基本科研业务费专项

天津市青年拔尖人才支持计划


References

[1] Cui H, Xu B. Chem Soc Rev, 2017, 46: 6430-6432 CrossRef PubMed Google Scholar

[2] Böhmer V. Angew Chem Int Ed Engl, 1995, 34: 713-745 CrossRef Google Scholar

[3] Huang ZT, Yang L. Prog Chem, 1994, 6: 173–177. Google Scholar

[4] Guo DS, Liu Y. Acc Chem Res, 2014, 47: 1925-1934 CrossRef PubMed Google Scholar

[5] Guo DS, Liu Y. Chem Soc Rev, 2012, 41: 5907-5921 CrossRef PubMed Google Scholar

[6] Guo DS, Wang K, Liu Y. J Incl Phenom Macrocycl Chem, 2008, 62: 1-21 CrossRef Google Scholar

[7] Wang MX. Chem Commun, 2008, 27: 4541 CrossRef PubMed Google Scholar

[8] Wang MX. Acc Chem Res, 2012, 45: 182-195 CrossRef PubMed Google Scholar

[9] Li ZT, Ji GZ, Zhao CX, Yuan SD, Ding H, Huang C, Du AL, Wei M. J Org Chem, 1999, 64: 3572-3584 CrossRef Google Scholar

[10] Li ZT, Zhang XL, Lian XD, Yu YH, Xia Y, Zhao CX, Chen Z, Lin ZP, Chen H. J Org Chem, 2000, 65: 5136-5142 CrossRef Google Scholar

[11] Xu ZX, Zhang C, Zheng QY, Chen CF, Huang ZT. Org Lett, 2007, 9: 4447-4450 CrossRef PubMed Google Scholar

[12] Xu ZX, Li GK, Chen CF, Huang ZT. Tetrahedron, 2008, 64: 8668-8675 CrossRef Google Scholar

[13] Nimse SB, Kim T. Chem Soc Rev, 2013, 42: 366-386 CrossRef PubMed Google Scholar

[14] de Fatima A, Fernandes S, Sabino A. Curr Drug Discov Technol, 2009, 6: 151-170 CrossRef Google Scholar

[15] Mutihac L. Curr Drug Discov Technol, 2008, 5: 98-104 CrossRef Google Scholar

[16] Rodik R, Boyko V, Kalchenko V. Curr Med Chem, 2009, 16: 1630-1655 CrossRef Google Scholar

[17] Dutt S, Wilch C, Schrader T. Chem Commun, 2011, 47: 5376-5383 CrossRef PubMed Google Scholar

[18] Coleman AW, Perret F, Moussa A, Dupin M, Guo Y, Perron H. Top Curr Chem, 2007, 277: 31–88. Google Scholar

[19] Coleman AW, Jebors S, Cecillon S, Perret P, Garin D, Marti-Battle D, Moulin M. New J Chem, 2008, 32: 780-782 CrossRef Google Scholar

[20] Wu L, Qu X. Chem Soc Rev, 2015, 44: 2963-2997 CrossRef PubMed Google Scholar

[21] Wen L, Sun Z, Han C, Imene B, Tian D, Li H, Jiang L. Chem Eur J, 2013, 19: 7686-7690 CrossRef PubMed Google Scholar

[22] You L, Zha D, Anslyn EV. Chem Rev, 2015, 115: 7840-7892 CrossRef PubMed Google Scholar

[23] Guo DS, Uzunova VD, Su X, Liu Y, Nau WM. Chem Sci, 2011, 2: 1722-1734 CrossRef Google Scholar

[24] Zheng Z, Geng WC, Gao J, Wang YY, Sun H, Guo DS. Chem Sci, 2018, 9: 2087-2091 CrossRef PubMed Google Scholar

[25] Zheng Z, Geng WC, Gao J, Mu YJ, Guo DS. Org Chem Front, 2018, 5: 2685-2691 CrossRef Google Scholar

[26] Gao J, Zheng Z, Shi L, Wu SQ, Sun H, Guo DS. Beilstein J Org Chem, 2018, 14: 1840-1845 CrossRef PubMed Google Scholar

[27] Guo DS, Yang J, Liu Y. Chem Eur J, 2013, 19: 8755-8759 CrossRef PubMed Google Scholar

[28] Dsouza RN, Hennig A, Nau WM. Chem Eur J, 2012, 18: 3444-3459 CrossRef PubMed Google Scholar

[29] Blaho VA, Hla T. Chem Rev, 2011, 111: 6299-6320 CrossRef PubMed Google Scholar

[30] Mills GB, Moolenaar WH. Nat Rev Cancer, 2003, 3: 582-591 CrossRef PubMed Google Scholar

[31] Chen G, Roy I, Yang C, Prasad PN. Chem Rev, 2016, 116: 2826-2885 CrossRef PubMed Google Scholar

[32] Shulov I, Rodik RV, Arntz Y, Reisch A, Kalchenko VI, Klymchenko AS. Angew Chem Int Ed, 2016, 55: 15884-15888 CrossRef PubMed Google Scholar

[33] Norouzy A, Azizi Z, Nau WM. Angew Chem Int Ed, 2015, 54: 792-795 CrossRef PubMed Google Scholar

[34] Gao J, Li J, Geng WC, Chen FY, Duan X, Zheng Z, Ding D, Guo DS. J Am Chem Soc, 2018, 140: 4945-4953 CrossRef PubMed Google Scholar

[35] Xu Z, Gonzalez-Abradelo D, Li J, Strassert CA, Ravoo BJ, Guo DS. Mater Chem Front, 2017, 1: 1847-1852 CrossRef Google Scholar

[36] Geng WC, Liu YC, Wang YY, Xu Z, Zheng Z, Yang CB, Guo DS. Chem Commun, 2017, 53: 392-395 CrossRef PubMed Google Scholar

[37] Xu Z, Peng S, Wang YY, Zhang JK, Lazar AI, Guo DS. Adv Mater, 2016, 28: 7666-7671 CrossRef PubMed Google Scholar

[38] Mao X, Tian D, Li H. Chem Commun, 2012, 48: 4851-4853 CrossRef PubMed Google Scholar

[39] Wang K, Guo DS, Zhang HQ, Li D, Zheng XL, Liu Y. J Med Chem, 2009, 52: 6402-6412 CrossRef PubMed Google Scholar

[40] Bus JS, Gibson JE. Environ Health Perspect, 1984, 55: 37-46 CrossRef PubMed Google Scholar

[41] Wang GF, Ren XL, Zhao M, Qiu XL, Qi AD. J Agric Food Chem, 2011, 59: 4294-4299 CrossRef PubMed Google Scholar

[42] Wang Z, Tao S, Dong X, Sun Y. Chem Asian J, 2017, 12: 341-346 CrossRef PubMed Google Scholar

[43] Shinde MN, Barooah N, Bhasikuttan AC, Mohanty J. Chem Commun, 2016, 52: 2992-2995 CrossRef PubMed Google Scholar

[44] Daze KD, Pinter T, Beshara CS, Ibraheem A, Minaker SA, Ma MCF, Courtemanche RJM, Campbell RE, Hof F. Chem Sci, 2012, 3: 2695-2699 CrossRef Google Scholar

[45] Webber MJ, Langer R. Chem Soc Rev, 2017, 46: 6600-6620 CrossRef PubMed Google Scholar

[46] Dai Y, Xu C, Sun X, Chen X. Chem Soc Rev, 2017, 46: 3830-3852 CrossRef PubMed Google Scholar

[47] Zhou Y, Li H, Yang YW. Chin Chem Lett, 2015, 26: 825-828 CrossRef Google Scholar

[48] Guo DS, Wang K, Wang YX, Liu Y. J Am Chem Soc, 2012, 134: 10244-10250 CrossRef PubMed Google Scholar

[49] Wang K, Guo DS, Zhao MY, Liu Y. Chem Eur J, 2016, 22: 1475-1483 CrossRef PubMed Google Scholar

[50] Dings RPM, Miller MC, Nesmelova I, Astorgues-Xerri L, Kumar N, Serova M, Chen X, Raymond E, Hoye TR, Mayo KH. J Med Chem, 2012, 55: 5121-5129 CrossRef PubMed Google Scholar

  • Figure 1

    Chemical structure and schematic illustration of calixarene (color online).

  • Figure 2

    Schematic representation of (a) fluorescence ‘‘switch-on’’ indicator displacement assay (IDA) based on calixarene and (b) supramolecular tandem assay [23,28] (color online).

  • Figure 3

    (a) Schematic illustration of the binding between LPA and GC5A and the operating IDA principle of fluorescence “switch-on” sensing of LPA by the GC5A•Fl reporter pair. (b) The set-up calibration line of the fluorescence intensity for quantitatively determining the LPA concentrations in serum. (c) Comparison of fluorescence signals between blood samples of ovarian cancer mice and normal mice [24] (color online).

  • Figure 4

    (a) Schematic illustration of cross-linking between calix[4]arene micelles and cyanine dyes to form calix[4]arene organic quantum dots. (b) Fluorescence confocal imaging of cells using calix[4]arene organic quantum dots. Reproduced with permission from ref [32]. Copyright 2016 John Wiley & Sons (color online).

  • Figure 5

    The supramolecular imaging system of sulfonatocalix[4]arene•lucigenin using IDA principle to monitor biomolecule uptake of cells. Reproduced with permission from ref [33]. Copyright 2015 John Wiley & Sons (color online).

  • Figure 6

    The toxicity mechanism of viologen and the application of sulfonatocalix[4]arene in supramolecular detoxification. Reproduced with permission from ref [39]. Copyright 2009 American Chemical Society (color online).

  • Figure 7

    Schematic illustration of the cholinesterase-responsive binary supramolecular vesicle system constructed by sulfonatocalix[4]arene and myristoylcholine. Reproduced with permission from ref [48]. Copyright 2012 American Chemical Society (color online).