logo

SCIENTIA SINICA Vitae, Volume 49 , Issue 2 : 151-162(2019) https://doi.org/10.1360/N052018-00171

Estimating abundance of Tibetan wild ass, Tibetan gazelle and Tibetan antelope using species distribution model and distance sampling

More info
  • ReceivedAug 22, 2018
  • AcceptedOct 30, 2018
  • PublishedJan 14, 2019

Abstract

There is an urgent need of understanding the distribution and abundance of the key species, Tibetan wild ass (Equus kiang), Tibetan gazelle (Procapra picticaudata) and Tibetan antelope (Pantholops hodgsonii) in the Three-River-Source National Park, especially after the first national park in China established there. We carried out field surveys in summers from 2014 to 2017 following the distance sampling protocol in the park, covering an area of 538000 km2. The total length of the survey routes is 14597.8 km. We recorded 3711 individuals of Tibetan wild ass, 1187 individuals of Tibetan gazelles, and 423 individuals of Tibetan antelopes. In order to accurately estimate the species abundance, we used species distribution models to quantify the relationship between species accurrences and 22 environmental variables, and predicted the population density in the whole study area. We compared the model prediction and field survey results, and made adjustment accordingly. The estimated abundance of Tibetan wild ass, Tibetan gazelle and Tibetan antelope in the study area is 44240, 13162, and 2390, respectively. To evaluate the potential bias of the estimation, we took into account of survey uncertainties, model uncertainties, and adjustment uncertainties using the detaction function based on distance sampling, R2 of species distribution models, and spatial heterogeneity of model-observation matchness. Our new method for estimating species abundance is suitable for species whose distribution is well correlated with environmental varibles, and the results of distance sampling are available.


Funded by

中国科学院科技服务网络(STS)

UNDP-GEF青海三江源生物多样性保护项目

国家自然科学基金面上项目(31772479,31572287)


Acknowledgment

感谢野外调查参与人员王玉山、周巴、骆倩倩、王博一、朱筱佳、权擎、黄冲、杜广明和王国庆.


References

[1] Dong S C, Zhou C J, Wang H Y. Ecological crisis and countermeasures of the Three Rivers’ Headstream Regions (in Chinese). J Nat Resour, 2002, 17: 713–720 [董锁成, 周长进, 王海英. “三江源”地区主要生态环境问题与对策. 自然资源学报, 2002, 17: 713–720]. Google Scholar

[2] Qian S, Mao L X, Hou Y Y, et al. Livestock carrying capacity and balance between carrying capacity of grassland with added forage and actual livestock in the Qinghai-Tibet Plateau (in Chinese). J Nat Resour, 2007, 22: 389–397, 498 [钱拴, 毛留喜, 侯英雨, 等. 青藏高原载畜能力及草畜平衡状况研究. 自然资源学报, 2007, 22: 389–397, 498]. Google Scholar

[3] Shao Q Q, Zhao Z P, Liu J Y, et al. The characteristics of land cover and macroscopical ecology changes in the source region of three rivers on Qinghai-Tibet Plateau during last 30 years (in Chinese). Geogr Res, 2010, 29: 1439–1451 [邵全琴, 赵志平, 刘纪远, 等. 近30年来三江源地区土地覆被与宏观生态变化特征. 地理研究, 2010, 29: 1439–1451]. Google Scholar

[4] Krebs C J. Ecological Methodology. Menlo Park, California: Addison Wesley, 1999. Google Scholar

[5] Xu X L, Liu J Y, Shao Q Q, et al. The dynamic changes of ecosystem spatial pattern and structure in the Three-River Headwaters region in Qinghai Province during recent 30 years (in Chinese). Geogr Res, 2008, 27: 829–838, 974 [徐新良, 刘纪远, 邵全琴, 等. 30年来青海三江源生态系统格局和空间结构动态变化. 地理研究, 2008, 27: 829–838, 974]. Google Scholar

[6] Sollmann R, Gardner B, Williams K A, et al. A hierarchical distance sampling model to estimate abundance and covariate associations of species and communities. Meth Ecol Evol, 2016, 7: 529–537. Google Scholar

[7] Fragoso J M V, Levi T, Oliveira L F B, et al. Line transect surveys underdetect terrestrial mammals: implications for the sustainability of subsistence hunting. PLoS One, 2016, 11: e0152659 CrossRef PubMed ADS Google Scholar

[8] Hothorn T, Müller J, Schröder B, et al. Decomposing environmental, spatial, and spatiotemporal components of species distributions. Ecol Monogr, 2011, 81: 329-347 CrossRef Google Scholar

[9] Guisan A, Thuiller W. Predicting species distribution: Offering more than simple habitat models. Ecol Lett, 2005, 8: 993-1009 CrossRef Google Scholar

[10] Boyce M S, Johnson C J, Merrill E H, et al. REVIEW: Can habitat selection predict abundance?. J Anim Ecol, 2016, 85: 11-20 CrossRef PubMed Google Scholar

[11] R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, 2018. Google Scholar

[12] Buckland S T, Anderson D R, Burnham K P, et al. Distance Sampling: Estimating Abundance of Biological Populations. London: Chapman and Hall, 1993. Google Scholar

[13] Hijmans R J, Cameron S E, Parra J L, et al. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol, 2005, 25: 1965-1978 CrossRef ADS Google Scholar

[14] Harding D J, Gesch D B, Carabajal C C, et al. Application of the shuttle laser altimeter in an accuracy assessment of GTOPO30, a global 1-kilometer digital elevation model. Inter Arch Photogr Remote Sens, 1999, 32: 81–85. Google Scholar

[15] Sanderson E W, Jaiteh M, Levy M A, et al. The human footprint and the last of the wild. Bioscience, 2002, 52: 891-904 CrossRef Google Scholar

[16] Olson D M, Dinerstein E, Wikramanayake E D, et al. Terrestrial ecoregions of the world: A new map of life on earth. Bioscience, 2001, 51: 933-938 CrossRef Google Scholar

[17] Li X, Wang Y. Applying various algorithms for species distribution modelling. Integrat Zool, 2013, 8: 124-135 CrossRef PubMed Google Scholar

[18] McCullagh P, Nelder J A. Generalized Linear Models. London: Chapman and Hall, 1989. Google Scholar

[19] Breiman L. Random forests. Mach Learn, 2001, 45: 5-32 CrossRef Google Scholar

[20] Hopfield J J. Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA, 1982, 79: 2554-2558 CrossRef ADS Google Scholar

[21] Breiman L, Friedman J H, Olshen R A, et al. Classification and Regression Trees. New York: Chapman and Hall, 1984. Google Scholar

[22] Ho T K. Random decision forest. In: Proceedings of 3rd International Conference on Document Analysis and Recognition. Montreal, 1995. 278–282. Google Scholar

[23] Ho T K. The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Machine Intell, 1998, 20: 832-844 CrossRef Google Scholar

[24] Li X H. Using “random forest” for classification and regression (in Chinese). Chin J Appl Entomol, 2013, 50: 1190–1197 [李欣海. 随机森林模型在分类与回归分析中的应用. 应用昆虫学报, 2013, 50: 1190–1197]. Google Scholar

[25] Shao Q Q, Guo X J, Li Y Z, et al. Using UAV remote sensing to analyze the population and distribution of large wild herbivores (in Chinese). J Remote Sens, 2018, 22: 497–507 [邵全琴, 郭兴健, 李愈哲, 等. 无人机遥感的大型野生食草动物种群数量及分布规律研究. 遥感学报, 2018, 22: 497–507]. Google Scholar

[26] Fischer J, Brosi B, Daily G C, et al. Should agricultural policies encourage land sparing or wildlife-friendly farming?. Front Ecol Environ, 2008, 6: 380-385 CrossRef Google Scholar

[27] Li X, Jiang G, Tian H, et al. Human impact and climate cooling caused range contraction of large mammals in China over the past two millennia. Ecography, 2015, 38: 74-82 CrossRef Google Scholar

[28] Tang Z M. Coexistence and conflict between wildlife and human—Travelling at the wilderness area in the North Tibet (in Chinese). Chin Tibet, 2010, 6: 16–21 [唐召明. 人与动物的共处与冲突——藏北“无人区”纪行. 中国西藏, 2010, 6: 16–21]. Google Scholar

[29] Nepal S K, Weber K E, Tian X W. Can wildlife and local farmers coexist (in Chinese). AMBIO, 1995, 4: 237–244 [Nepal S K, Weber K E, 田学文. 野生生物与当地农民能否共存. AMBIO-人类环境杂志, 1995, 4: 237–244]. Google Scholar

  • Figure 1

    The study area for estimating abundances of Tibetan wild ass, Tibetan gazelle, and Tibetan antelope is in the red rectangle. The green lines are survey routes. The shaded area is the Three-River-Source National Park. The blue lines enclose watersheds of Yangtze River, Lancang-Mekong River, and Yellow River. The grey lines are provincial borders

  • Figure 2

    The distributions of Tibetan wild ass, Tibetan gazelle, and Tibetan antelope in the Three-River-Source Region. The purple circles shows the occurrencs of the species, their sizes represent the group size; the back lines are survey routes; the background color shows the loglog transformed predicted population density (individual/km2)

  • Figure 3

    The occurrences of Tibetan wild ass (A, red circles) and Tibetan gazelle (B, purple circles) along provincial road 308 at Duoxiu village, and predicted population density (A and B, quadrats). The source part of the road is unpaved, from Duoxiu village to Cuochi village (C)

  • Figure 4

    Detection functions of distance sampling for surveying Tibetan wild ass (A), Tibetan gazelle (B), and Tibetan antelope (C) at the Three-River-Source Region. The best detection function for the three species is half normal, and the adjuct function is cosine

  • Figure 5

    The 90% confident intervals (between vertical lines) for the estimated population abundances of Tibetan wild ass, Tibetan gazelle, and Tibetan antelope based on combined errors from survey, modelling, and matching (between model and survey)

  • Table 1   Estimated abundances of Tibetan wild ass, Tibetan gazelle, and Tibetan antelope in the study area (92°–102°E, 32°–37°N) from 2014 to 2017

    物种

    模型估计的种群大小

    环境变量对动物数量的解释程度R2

    调查样线的长度 (km)

    调查样线上动物数量的估计值

    观测到的个体数

    矫正后动物的种群大小

    藏野驴

    2014

    40521

    0.2907

    4496.7

    1173

    963

    33260

    2015

    43390

    0.1785

    2522.6

    856

    982

    49774

    2016

    43494

    0.1908

    4667.2

    1324

    727

    23885

    2017

    49563

    0.4361

    2911.3

    866

    1039

    59495

    2014~2017

    93175

    0.4562

    14597.8

    7816

    3711

    44240

    藏原羚

    2014

    23371

    0.1768

    4496.7

    642

    393

    14313

    2015

    16264

    0.4664

    2522.6

    415

    364

    14258

    2016

    12829

    0.2529

    4667.2

    481

    230

    6131

    2017

    10882

    0.3848

    2911.3

    217

    200

    10029

    2014~2017

    42780

    0.4856

    14597.8

    3858

    1187

    13162

    藏羚羊

    2014~2017

    11987

    0.3706

    14597.8

    2121

    423

    2390

  • Table 2   The abundance of Tibetan wild ass and Tibetan gazelle within each township in the head water of Yangtze River and Yellow River

    乡镇

    面积 (km2)

    种群大小(只)

    藏野驴

    藏原羚

    曲麻莱县

    曲麻河乡

    28909

    11483

    5444

    巴干乡

    2460

    28

    13

    秋智乡

    7623

    176

    108

    麻多乡

    13760

    350

    116

    叶格乡

    2608

    199

    131

    治多县

    索加乡

    23257

    17572

    3755

    多彩乡

    9551

    164

    98

    扎河乡

    10223

    1596

    590

    治渠乡

    1032

    43

    26

    玛多县

    花石峡镇

    8804

    2016

    411

    扎陵湖乡

    6137

    1855

    383

    玛查里镇

    5112

    1768

    182

    黄河乡

    5200

    797

    101

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号