logo

差异抬升: 青藏高原新生代古高度变化历史

刘晓惠 1,2,3,*, 许强 1,2, 丁林 1,2
More info
  • ReceivedFeb 17, 2016
  • AcceptedAug 9, 2016
  • PublishedOct 8, 2016

Abstract


Funded by

国家自然科学基金项目(41472207,41490615)

中国科学院战略性先导科技专项项目(B类)(XDB03010401)


Acknowledgment

感谢编委和审稿人提出的宝贵修改意见, 为进一步提高稿件的质量提供必不可少的帮助.


References

[1] 丁 林, 来 庆洲. 冈底斯地壳碰撞前增厚及隆升的地质证据: 岛弧拼贴对青藏高原隆升及扩展历史的制约. 科学通报, 2003, 48: 836-842 Google Scholar

[2] 丁 林, 许 强, 张 利云, 杨 迪, 来 庆洲, 黄 费新, 史 仁灯. 青藏高原河流氧同位素区域变化特征与高度预测模型建立. 第四纪研究, 2009, 29: 1-12 Google Scholar

[3] 黄 万波, 计 宏祥. 西藏三趾马动物群的首次发现及其对高原隆起的意义. 科学通报, 1979, 24: 885-888 Google Scholar

[4] 计 宏祥, 黄 万波, 陈 万勇, 徐 钦奇, 郑 邵华. 西藏三趾马动物群的首次发现及其对高原隆升的意义. 见: 中国科学院综合科学考察队, 青藏高原隆升的时代、幅度和形式问题. 北京: 科学出版社. 19–25. 1981, Google Scholar

[5] 李 吉均, 方 小敏. 青藏高原隆起与环境变化研究. 科学通报, 1998, 43: 1568-1574 Google Scholar

[6] 李 吉均, 文 世宣, 张 青松, 王 富葆, 郑 本兴, 李 炳元. 青藏高原隆起的时代、幅度和形式的探讨. 中国科学, 1979, 9: 608-616 Google Scholar

[7] 李 吉均. 青藏高原隆升与环境研究的回顾与争议. 见: 施雅风, 李吉均, 李炳元, 主编. 青藏高原晚新生代隆升与环境变化. 广州: 广东科技出版社. 1998, : 3-15 Google Scholar

[8] 李 亚林, 王 成善, 伊 海生, 刘 志飞, 李 勇. 西藏北部新生代大型逆冲推覆构造与唐古拉山的隆起. 地质学报, 2006, 80: 1119-1130 Google Scholar

[9] 施 雅风, 刘 东生. 西夏邦玛峰地区科学考察初步报告. 科学通报, 1964, 10: 928-938 Google Scholar

[10] 王 世锋, 张 伟林, 方 小敏, 戴 霜, Kempf O. 藏西南札达盆地磁性地层学特征及其构造意义. 科学通报, 2008, 53: 676-683 Google Scholar

[11] 吴 珍汉, 吴 中海, 胡 道功, 彭 华, 张 耀玲. 青藏高原北部中新统五道梁群湖相沉积碳氧同位素变化及古气候旋回. 中国地质, 2009a, 36: 966-975 Google Scholar

[12] 吴 珍汉, 吴 中海, 胡 道功, 周 春景, 叶 培盛, 张 耀玲. 青藏高原古大湖与夷平面的关系及高原面形成演化过程. 现代地质, 2009b, 23: 993-1002 Google Scholar

[13] 吴 珍汉, 赵 逊, 叶 培盛, 吴 中海, 胡 道功, 周 春景. 根据湖湘沉积碳氧同位素估算青藏高原古海拔高度. 地质学报, 2007, 81: 1277-1288 Google Scholar

[14] 徐 仁. 青藏古植被的演变与青藏高原的隆起. 植物分类学报, 1982, 20: 385-391 Google Scholar

[15] 徐 仁, 陶 君容, 孙 湘君. 希夏邦马峰高山栎化石层的发现及其在植物学和地质学上的意义. 植物学报, 1973, 15: 104-114 Google Scholar

[16] 许 强, 丁 林. 冈底斯山的隆起过程与青藏高原古高度研究. 中国科学基金, (1): 54–56. 2015, Google Scholar

[17] 姚 檀栋, 周 行, 杨 晓新. 印度季风水汽对青藏高原降水和河水中δ18O高程递减率的影响. 科学通报, 2009, 54: 2124-2130 Google Scholar

[18] 张 利云, 丁 林, 杨 迪, 许 强, 蔡 福龙, 刘 德亮. 藏北中中新世淡色花岗岩及流纹岩的成因: 对高原北部边界地壳加厚过程和隆升时代的制约. 科学通报, 2012, 57: 153-168 Google Scholar

[19] 张 弥曼, Miao D S. 青藏高原新生代鱼化石及其古环境意义. 科学通报, 2016, 61: 981-995 Google Scholar

[20] 周 浙昆, 杨 青松, 夏 珂. 栎属高山栎组植物化石推测青藏高原的隆起. 科学通报, 2007, 52: 249-257 Google Scholar

[21] Armijo R, Tapponnier P, Han T. Late Cenozoic right-lateral strike-slip faulting in southern Tibet. J Geophys Res, 1989, 94: 2787-2838 CrossRef ADS Google Scholar

[22] Boos W R, Kuang Z. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature, 2010, 463: 218-222 CrossRef PubMed ADS Google Scholar

[23] Cai F, Ding L, Yue Y. Provenance analysis of upper Cretaceous strata in the Tethys Himalaya, southern Tibet: Implications for timing of India-Asia collision. Earth Planet Sci Lett, 2011, 305: 195-206 CrossRef ADS Google Scholar

[24] Campani M, Mulch A, Kempf O, Schlunegger F, Mancktelow N. Miocene paleotopography of the Central Alps. Earth Planet Sci Lett, 2012, 337-338: 174-185 CrossRef ADS Google Scholar

[25] Chamberlain C P, Poage M A, Craw D, Reynolds R C. Topographic development of the Southern Alps recorded by the isotopic composition of authigenic clay minerals, South Island, New Zealand. Chem Geol, 1999, 155: 279-294 CrossRef Google Scholar

[26] Chang C F, Pan Y S, Sun Y Y. The tectonic evolution of Qinghai-Tibet Plateau: A review. In: Sengör A M C, ed. Tectonic Evolution of the Tethyan Region. Heidelberg: Springer. 1989, : 415-476 Google Scholar

[27] Chen J, Huang B, Sun L. New constraints to the onset of the India-Asia collision: Paleomagnetic reconnaissance on the Linzizong group in the Lhasa Block, China. Tectonophysics, 2010, 489: 189-209 CrossRef ADS Google Scholar

[28] Chu M F, Chung S L, Song B, Liu D, O'Reilly S Y, Pearson N J, Ji J, Wen D J. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 2006, 34: 745-748 CrossRef ADS Google Scholar

[29] Chung S L, Chu M F, Zhang Y, Xie Y, Lo C H, Lee T Y, Lan C Y, Li X, Zhang Q, Wang Y. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Sci Rev, 2005, 68: 173-196 CrossRef ADS Google Scholar

[30] Chung S L, Lo C H, Lee T Y, Zhang Y, Xie Y, Li X, Wang K L, Wang P L. Diachronous uplift of the Tibetan Plateau starting 40 Myr ago. Nature, 1998, 394: 769-773 CrossRef ADS Google Scholar

[31] Clark M K, Schoenbohm L M, Royden L H, Whipple K X, Burchfiel B C, Zhang X, Tang W, Wang E, Chen L. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns. Tectonics, 2004, 23: TC1006 CrossRef ADS Google Scholar

[32] Coleman M, Hodges K. Evidence for Tibetan Plateau uplift before 14 Myr ago from a new minimum age for east-west extension. Nature, 1995, 374: 49-52 CrossRef ADS Google Scholar

[33] Currie B S, Rowley D B, Tabor N J. Middle Miocene paleoaltimetry of southern Tibet: Implications for the role of mantle thickening and delamination in the Himalayan orogen. Geology, 2005, 33: 181-184 CrossRef ADS Google Scholar

[34] Currie B S, Polissar P J, Rowley D B, Ingalls M, Li S, Olack G, Freeman K H. Multiproxy paleoaltimetry of the Late Oligocene-Pliocene Oiyug Basin, southern Tibet. Am J Sci, 2016, 316: 401-436 CrossRef Google Scholar

[35] Cyr A J, Currie B S, Rowley D B. Geochemical evaluation of Fenghuoshan Group lacustrine carbonates, North-Central Tibet: Implications for the Paleoaltimetry of the Eocene Tibetan Plateau. J Geol, 2005, 113: 517-533 CrossRef ADS Google Scholar

[36] Dai J G, Zhao X X, Wang C S, Zhu L D, Li Y L, Finn D. The vast proto-Tibetan Plateau: New constraints from Paleogene Hoh Xil Basin. Gondwana Res, 2012, 22: 434-446 CrossRef Google Scholar

[37] DeCelles P G, Kapp P, Ding L, Gehrels G E. Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: Changing environments in response to tectonic partitioning, aridification, and regional elevation gain. Geol Soc Am Bull, 2007a, 119: 654-680 CrossRef ADS Google Scholar

[38] DeCelles P G, Quade J, Kapp P, Fan M, Dettman D L, Ding L. High and dry in central Tibet during the Late Oligocene. Earth Planet Sci Lett, 2007b, 253: 389-401 CrossRef ADS Google Scholar

[39] DeCelles P G, Kapp P, Quade J, Gehrels G E. Oligocene-Miocene Kailas basin, southwestern Tibet: Record of postcollisional upper-plate extension in the Indus-Yarlung suture zone. Geol Soc Am Bull, 2011, 123: 1337-1362 CrossRef ADS Google Scholar

[40] Deng T, Ding L. Paleoaltimetry reconstructions of the Tibetan Plateau: Progress and contradictions. Nat Sci Rev, 2015, 2: 417-437 CrossRef Google Scholar

[41] Deng T, Wang S Q, Xie G P, Li Q, Hou S K, Sun B Y. A mammalian fossil from the Dingqing Formation in the Lunpola Basin, northern Tibet, and its relevance to age and paleo-altimetry. Chin Sci Bull, 2012, 57: 261-269 CrossRef Google Scholar

[42] Deng T, Wang X, Fortelius M, Li Q, Wang Y, Tseng Z J, Takeuchi G T, Saylor J E, Saila L K, Xie G. Out of Tibet: Pliocene woolly rhino suggests High-Plateau origin of Ice Age megaherbivores. Science, 2011, 333: 1285-1288 CrossRef PubMed ADS Google Scholar

[43] Dennis K J, Schrag D P. Clumped isotope thermometry of carbonatites as an indicator of diagenetic alteration. Geochim Cosmochim Acta, 2010, 74: 4110-4122 CrossRef ADS Google Scholar

[44] Dewey J F, Shackleton R M, Chang C F, Sun Y. The tectonic evolution of the Tibetan Plateau. Philos Trans R Soc A-Math Phys Eng Sci, 1988, 327: 379-413 CrossRef Google Scholar

[45] Ding L, Kapp P, Wan X. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tectonics, 2005, 24: TC3001 CrossRef ADS Google Scholar

[46] Ding L, Kapp P, Yue Y, Lai Q. Postcollisional calc-alkaline lavas and xenoliths from the southern Qiangtang terrane, central Tibet. Earth Planet Sci Lett, 2007, 254: 28-38 CrossRef ADS Google Scholar

[47] Ding L, Yang D, Cai F L, Pullen A, Kapp P, Gehrels G E, Zhang L Y, Zhang Q H, Lai Q Z, Yue Y H, Shi R D. Provenance analysis of the Mesozoic Hoh-Xil-Songpan-Ganzi turbidites in northern Tibet: Implications for the tectonic evolution of the eastern Paleo-Tethys Ocean. Tectonics, 2013, 32: 34-48 CrossRef ADS Google Scholar

[48] Ding L, Xu Q, Yue Y, Wang H, Cai F, Li S. The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene- Eocene Linzhou Basin. Earth Planet Sci Lett, 2014, 392: 250-264 CrossRef ADS Google Scholar

[49] Dupont-Nivet G, Hoorn C, Konert M. Tibetan uplift prior to the Eocene-Oligocene climate transition: Evidence from pollen analysis of the Xining Basin. Geology, 2008, 36: 987-990 CrossRef ADS Google Scholar

[50] Dupont-Nivet G, Krijgsman W, Langereis C G, Abels H A, Dai S, Fang X. Tibetan Plateau aridification linked to global cooling at the Eocene-Oligocene transition. Nature, 2007, 445: 635-638 CrossRef PubMed Google Scholar

[51] Dürr S B. Provenance of Xigaze fore-arc basin clastic rocks (Cretaceous, south Tibet). Geol Soc Am Bull, 1996, 108: 669-684 CrossRef Google Scholar

[52] Falconer H. On the fossil rhinoceros of central Tibet and its relation to the recent upheaval of the Himalayahs. In: Falconer H, ed. Palaeontological Memoirs and Notes of the Late Hugh Falconer. London: R Hardwicke, 1868, : 173-185 Google Scholar

[53] Forest C E, Wolfe J A, Molnar P, Emanuel K A. Paleoaltimetry incorporating atmospheric physics and botanical estimates of paleoclimate. Geol Soc Am Bull, 1999, 111: 497-511 CrossRef Google Scholar

[54] Fielding E J. Tibet uplift and erosion. Tectonophysics, 1996, 260: 55-84 CrossRef ADS Google Scholar

[55] Gaetani M, Garzanti E. Multicyclic history of the northern India continental-margin (northwestern Himalaya). AAPG Bull, 1991, 75: 1427-1446 Google Scholar

[56] Garzione C N, Dettman D L, Quade J, DeCelles P G, Butler R F. High times on the Tibetan Plateau: Paleoelevation of the Thakkhola graben, Nepal. Geology, 2000a, 28: 339-342 CrossRef Google Scholar

[57] Garzione C N, Quade J, DeCelles P G, English N B. Predicting paleoelevation of Tibet and the Himalaya from δ18O vs. altitude gradients in meteoric water across the Nepal Himalaya. Earth Planet Sci Lett, 2000b, 183: 215-229 CrossRef ADS Google Scholar

[58] Gébelin A, Mulch A, Teyssier C, Jessup M J, Law R D, Brunel M. The Miocene elevation of Mount Everest. Geology, 2013, 41: 799-802 CrossRef Google Scholar

[59] Ghosh P, Garzione C N, Eiler J M. Rapid uplift of the altiplano revealed through 13C-18O bonds in paleosol carbonates. Science, 2006, 311: 511-515 CrossRef PubMed ADS Google Scholar

[60] Gonfiantini R, Roche M A, Olivry J C, Fontes J C, Zuppi G M. The altitude effect on the isotopic composition of tropical rains. Chem Geol, 2001, 181: 147-167 CrossRef Google Scholar

[61] Harrison T M, Copeland P, Kidd W S F, Yin A. Raising Tibet. Science, 1992, 255: 1663-1670 CrossRef PubMed ADS Google Scholar

[62] Henkes G A, Passey B H, Grossman E L, Shenton B J, Pérez-Huerta A, Yancey T E. Temperature limits for preservation of primary calcite clumped isotope paleotemperatures. Geochim Cosmochim Acta, 2014, 139: 362-382 CrossRef ADS Google Scholar

[63] Hetzel R, Dunkl I, Haider V, Strobl M, von Eynatten H, Ding L, Frei D. Peneplain formation in southern Tibet predates the India-Asia collision and plateau uplift. Geology, 2011, 39: 983-986 CrossRef Google Scholar

[64] Hoke G D, Liu-Zeng J, Hren M T, Wissink G K, Garzione C N. Stable isotopes reveal high southeast Tibetan Plateau margin since the Paleogene. Earth Planet Sci Lett, 2014, 394: 270-278 CrossRef ADS Google Scholar

[65] Horton B K, Yin A, Spurlin M S, Zhou J, Wang J. Paleocene-Eocene syncontractional sedimentation in narrow, lacustrine-dominated basins of east-central Tibet. Geol Soc Am Bull, 2002, 114: 771-786 CrossRef Google Scholar

[66] Hren M T, Bookhagen B, Blisniuk P M, Booth A L, Chamberlain C P. δ18O and δD of streamwaters across the Himalaya and Tibetan Plateau: Implications for moisture sources and paleoelevation reconstructions. Earth Planet Sci Lett, 2009, 288: 20-32 CrossRef ADS Google Scholar

[67] Huntington K W, Saylor J, Quade J, Hudson A M. High late Miocene-Pliocene elevation of the Zhada Basin, southwestern Tibetan Plateau, from carbonate clumped isotope thermometry. Geol Soc Am Bull, 2015, 127: 181-199 CrossRef ADS Google Scholar

[68] Ji W Q, Wu F Y, Chung S L, Li J X, Liu C Z. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chem Geol, 2009, 262: 229-245 CrossRef Google Scholar

[69] Jia G D, Bai Y, Ma Y L, Sun J M, Peng P A. Paleoelevation of Tibetan Lunpola basin in the Oligocene-Miocene transition estimated from leaf wax lipid dual isotopes. Glob Planet Change, 2015, 126: 14-22 CrossRef ADS Google Scholar

[70] Kapp P, DeCelles P G, Gehrels G E, Heizler M, Ding L. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geol Soc Am Bull, 2007a, 119: 917-933 CrossRef ADS Google Scholar

[71] Kapp P, DeCelles P G, Leier A L, Fabijanic J M, He S, Pullen A, Ding L. The Gangdese retroarc thrust belt revealed. GSA Today, 2007b, 17: 4-9 Google Scholar

[72] Kapp P, Yin A, Harrison T M, Ding L. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. Geol Soc Am Bull, 2005, 117: 865-878 CrossRef ADS Google Scholar

[73] Khan M A, Spicer R A, Bera S, Ghosh R, Yang J, Spicer T E V, Guo S, Su T, Jacques F, Grote P J. Miocene to Pleistocene floras and climate of the Eastern Himalayan Siwaliks, and new palaeoelevation estimates for the Namling-Oiyug Basin, Tibet. Glob Planet Change, 2014, 113: 1-10 CrossRef ADS Google Scholar

[74] Leier A L, DeCelles P G, Kapp P, Ding L. The Takena Formation of the Lhasa terrane, southern Tibet: The record of a Late Cretaceous retroarc foreland basin. Geol Soc Am Bull, 2007a, 119: 31-48 CrossRef ADS Google Scholar

[75] Leier A L, DeCelles P G, Kapp P, Gehrels G E. Lower Cretaceous strata in the Lhasa Terrane, Tibet, with implications for understanding the early tectonic history of the Tibetan Plateau. J Sediment Res, 2007b, 77: 809-825 CrossRef ADS Google Scholar

[76] Li S, Ding L, Xu Q, Wang H, Yue Y, Baral U. The evolution of Yarlung Tsangpo River: Constraints from the age and provenance of the Gangdese Conglomerates, southern Tibet. Gondwana Res, 2015, : doi: 10.1016/j.gr.2015.05.010 CrossRef Google Scholar

[77] Li S Y, Currie B S, Rowley D B, Ingalls M. Cenozoic paleoaltimetry of the SE margin of the Tibetan Plateau: Constraints on the tectonic evolution of the region. Earth Planet Sci Lett, 2015, 432: 415-424 CrossRef ADS Google Scholar

[78] Li Y L, He J, Wang C S, Santosh M, Dai J G, Zhang Y X, Wei Y S, Wang J G. Late Cretaceous K-rich magmatism in central Tibet: Evidence for early elevation of the Tibetan plateau?. Lithos, 2013, 160-161: 1-13 CrossRef ADS Google Scholar

[79] Li Y L, Wang C S, Dai J G, Xu G Q, Hou Y L, Li X H. Propagation of the deformation and growth of the Tibetan-Himalayan orogen: A review. Earth-Sci Rev, 2015, 143: 36-61 CrossRef Google Scholar

[80] Licht A, van Cappelle M, Abels H A, Ladant J B, Trabucho-Alexandre J, France-Lanord C, Donnadieu Y, Vandenberghe J, Rigaudier T, Lécuyer C, Terry Jr D, Adriaens R, Boura A, Guo Z, Soe A N, Quade J, Dupont-Nivet G, Jaeger J J. Asian monsoons in a Late Eocene greenhouse world. Nature, 2014, 513: 501-506 CrossRef PubMed ADS Google Scholar

[81] Lippert P C, van Hinsbergen D J J, Dupont-Nivet G. Early Cretaceous to present latitude of the central proto-Tibetan Plateau: A paleomagnetic synthesis with implications for Cenozoic tectonics, paleogeography, and climate of Asia. Geol Soc Am Spec Pap, 2014, 507: 1-23 Google Scholar

[82] Liu M, Yang Y Q. Extensional collapse of the Tibetan Plateau: Results of three-dimensional finite element modeling. J Geophys Res, 2003, 108: 2361 CrossRef ADS Google Scholar

[83] Liu W G, Liu Z H, An Z S, Sun J M, Chang H, Wang N, Dong J B, Wang H Y. Late Miocene episodic lakes in the arid Tarim Basin, western China. Proc Natl Acad Sci USA, 2014, 111: 16292-16296 CrossRef PubMed ADS Google Scholar

[84] Liu Z F, Zhao X X, Wang C S, Liu S, Yi H S. Magnetostratigraphy of Tertiary sediments from the Hoh Xil Basin: Implications for the Cenozoic tectonic history of the Tibetan Plateau. Geophys J Int, 2003, 154: 233-252 CrossRef ADS Google Scholar

[85] Liu-Zeng J, Tapponnier P, Gaudemer Y, Ding L. Quantifying landscape differences across the Tibetan Plateau: Implications for topographic relief evolution. J Geophys Res, 2008, 113: F04018 CrossRef ADS Google Scholar

[86] Meyer H W. A review of paleotemperature lapse rate methods for estimating paleoelevation from fossil floras. Rev Mineral Geochem, 2007, 66: 155-171 CrossRef Google Scholar

[87] Miao Y, Wu F, Chang H, Fang X, Deng T, Sun J, Jin C. A Late-Eocene palynological record from the Hoh Xil Basin, northern Tibetan Plateau, and its implications for stratigraphic age, paleoclimate and paleoelevation. Gondwana Res, 2016, 31: 241-252 CrossRef Google Scholar

[88] Molnar P, England P. 1990. Late Cenozoic uplift of mountain ranges and global climate change: Chicken or egg? Nature, 346: 29–34. Google Scholar

[89] Molnar P, England P, Martinod J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon. Rev Geophys, 1993, 31: 357-396 CrossRef ADS Google Scholar

[90] Mulch A. Stable isotope paleoaltimetry and the evolution of landscapes and life. Earth Planet Sci Lett, 2016, 433: 180-191 CrossRef ADS Google Scholar

[91] Mulch A, Chamberlain C P, Cosca M A, Teyssier C, Methner K, Hren M T, Graham S A. Rapid change in high-elevation precipitation patterns of western North America during the Middle Eocene Climatic Optimum (MECO). Am J Sci, 2015, 315: 317-336 CrossRef Google Scholar

[92] Mulch A, Chamberlain C P. Stable isotope paleoaltimetry in orogenic belts the silicate record in surface and crustal geological archives. Rev Mineral Geochem, 2007, 66: 89-118 CrossRef Google Scholar

[93] Mulch A, Chamberlain C P. Earth science: The rise and growth of Tibet. Nature, 2006, 439: 670-671 CrossRef PubMed ADS Google Scholar

[94] Mulch A, Uba C E, Strecker M R, Schoenberg R, Chamberlain C P. Late Miocene climate variability and surface elevation in the central Andes. Earth Planet Sci Lett, 2010, 290: 173-182 CrossRef ADS Google Scholar

[95] Murphy M A, Saylor J E, Ding L. Late Miocene topographic inversion in southwest Tibet based on integrated paleoelevation reconstructions and structural history. Earth Planet Sci Lett, 2009, 282: 1-9 CrossRef ADS Google Scholar

[96] Murphy M A, Yin A, Harrison T M, Dürr S B, Chen Z, Ryerson F J. 1997. Did the Indo-Asian collision alone create the Tibetan plateau? Geology, 25: 719–722. Google Scholar

[97] Najman Y. The detrital record of orogenesis: A review of approaches and techniques used in the Himalayan sedimentary basins. Earth-Sci Rev, 2005, 74: 1-72 CrossRef ADS Google Scholar

[98] Najman Y, Appel E, Boudagher-Fadel M, Bown P, Carter A, Garzanti E, Godin L, Han J, Liebke U, Oliver G, Parrish R, Vezzoli G. Timing of India-Asia collision: Geological, biostratigraphic, and palaeomagnetic constraints. J Geophys Res, 2010, 115: B12416 CrossRef ADS Google Scholar

[99] Polissar P J, Freeman K H, Rowley D B, McInerney F A, Currie B S. Paleoaltimetry of the Tibetan Plateau from D/H ratios of lipid biomarkers. Earth Planet Sci Lett, 2009, 287: 64-76 CrossRef ADS Google Scholar

[100] Qiu Z X, Qiu Z D, Deng T, Li C K, Zhang Z Q, Wang B Y, Wang X M. Neogene land mammal stages/ages of China. In: Wang X M, Flynn L J, Fortelius M, eds. Fossil Mammals of Asia: Neogene Biostratigraphy and Chronology. New York: Columbia University Press. 2013, : 29-90 Google Scholar

[101] Quade J, Cerling T E. Expansion of C4 grasses in the Late Miocene of Northern Pakistan: Evidence from stable isotopes in paleosols. Paleogeogr Paleoclimatol Paleoecol, 1995, 115: 91-116 CrossRef Google Scholar

[102] Quade J, Garzione C, Eiler J. Paleoelevation reconstruction using Pedogenic carbonates. Rev Mineral Geochem, 2007, 66: 53-87 CrossRef Google Scholar

[103] Quade J, Breecker D O, Daeron M, Eiler J. The paleoaltimetry of Tibet: An isotopic perspective. Am J Sci, 2011, 311: 77-115 CrossRef Google Scholar

[104] Quade J, Eiler J, Daëron M, Achyuthan H. The clumped isotope geothermometer in soil and paleosol carbonate. Geochim Cosmochim Acta, 2013, 105: 92-107 CrossRef ADS Google Scholar

[105] Ratschbacher L, Frisch W, Liu G, Chen C. Distributed deformation in southern and western Tibet during and after the India-Asia collision. J Geophys Res, 1994, 99: 19917-19945 CrossRef ADS Google Scholar

[106] Rohrmann A, Kapp P, Carrapa B, Reiners P W, Guynn J, Ding L, Heizler M. Thermochronologic evidence for plateau formation in central Tibet by 45 Ma. Geology, 2012, 40: 187-190 CrossRef Google Scholar

[107] Rowley D B. Age of initiation of collision between India and Asia: A review of stratigraphic data. Earth Planet Sci Lett, 1996, 145: 1-13 CrossRef ADS Google Scholar

[108] Rowley D B. Stable isotope-based paleoaltimetry: Theory and validation. Rev Mineral Geochem, 2007, 66: 23-52 CrossRef Google Scholar

[109] Rowley D B, Currie B S. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature, 2006, 439: 677-681 CrossRef PubMed ADS Google Scholar

[110] Rowley D B, Garzione C N. Stable isotope-based paleoaltimetry. Annu Rev Earth Planet Sci, 2007, 35: 463-508 CrossRef ADS Google Scholar

[111] Rowley D B, Pierrehumbert R T, Currie B S. A new approach to stable isotope-based paleoaltimetry: Implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene. Earth Planet Sci Lett, 2001, 188: 253-268 CrossRef ADS Google Scholar

[112] Saylor J E, Quade J, Dettman D L, DeCelles P G, Kapp P A, Ding L. The late Miocene through present paleoelevation history of southwestern Tibet. Am J Sci, 2009, 309: 1-42 CrossRef Google Scholar

[113] Searle M P, Windley B F, Coward M P, Cooper D J W, Rex A J, Rex D, Li T D, Xiao X, Jan M Q, Thakur V C, Kumar S. The closing of Tethys and the tectonics of the Himalaya. Geol Soc Am Bull, 1987, 98: 678-701 CrossRef Google Scholar

[114] Song X Y, Spicer R A, Yang J, Yao Y F, Li C S. Pollen evidence for an Eocene to Miocene elevation of central southern Tibet predating the rise of the High Himalaya. Paleogeogr Paleoclimatol Paleoecol, 2010, 297: 159-168 CrossRef Google Scholar

[115] Spicer R A, Harris N B W, Widdowson M, Herman A B, Guo S, Valdes P J, Wolfe J A, Kelley S P. Constant elevation of southern Tibet over the past 15 million years. Nature, 2003, 421: 622-624 CrossRef PubMed Google Scholar

[116] Spicer R A, Yang J, Herman A B, Kodrul T, Maslova N, Spicer T E V, Aleksandrova G, Jin J. Asian Eocene monsoons as revealed by leaf architectural signatures. Earth Planet Sci Lett, 2016, 449: 61-68 CrossRef ADS Google Scholar

[117] Staisch L M, Niemi N A, Hong C, Clark M K, Rowley D B, Currie B. A Cretaceous-Eocene depositional age for the Fenghuoshan Group, Hoh Xil Basin: Implications for the tectonic evolution of the northern Tibet Plateau. Tectonics, 2014, 33: 281-301 CrossRef ADS Google Scholar

[118] Staisch L M, Niemi N A, Clark M K, Chang H. Eocene to late Oligocene history of crustal shortening within the Hoh Xil Basin and implications for the uplift history of the northern Tibetan Plateau. Tectonics, 2016, 35: 862-895 CrossRef ADS Google Scholar

[119] Sun B, Wang Y F, Li C S, Yang J, Li J F, Li Y L, Deng T, Wang S Q, Zhao M, Spicer R A, Ferguson D K, Mehrotra R C. Early Miocene elevation in northern Tibet estimated by palaeobotanical evidence. Sci Rep, 2015, 5: 10379 CrossRef PubMed ADS Google Scholar

[120] Sun J M, Liu T S. The age of the Taklimakan Desert. Science, 2006, 312: 1621-1621 CrossRef PubMed Google Scholar

[121] Sun J M, Xu Q H, Liu W M, Zhang Z Q, Xue L, Zhao P. Palynological evidence for the latest Oligocene-early Miocene paleoelevation estimate in the Lunpola Basin, central Tibet. Paleogeogr Paleoclimatol Paleoecol, 2014, 399: 21-30 CrossRef Google Scholar

[122] Sun J M, Alloway B, Fang X, Windley B F. Refuting the evidence for an earlier birth of the Taklimakan Desert. Proc Natl Acad Sci USA, 2015, 112: E5556-E5557 CrossRef PubMed ADS Google Scholar

[123] Tapponnier P, Xu Z Q, Roger F, Meyer B, Arnaud N, Wittlinger G, Yang J S. Oblique stepwise rise and growth of the Tibet Plateau. Science, 2001, 294: 1671-1677 CrossRef PubMed ADS Google Scholar

[124] Turner S, Hawkesworth C, Liu J, Rogers N, Kelley S, van Calsteren P. Timing of Tibetan uplift constrained by analysis of volcanic rocks. Nature, 1993, 364: 50-54 CrossRef ADS Google Scholar

[125] Upadhyay R, Ram-Awatar R, Kar R K, Sinha A K. Palynological evidence for the Palaeocene evolution of the forearc basin, Indus Suture Zone, Ladakh, India. Terra Nova, 2004, 16: 216-225 CrossRef Google Scholar

[126] Wan X Q, Ding L. Discovery of the Latest Cretaceous planktonic foraminifera from Gyirong of southern Tibet and its chronostrati-graphic significance. Acta Palaeontol Sin, 2002, 41: 89-100 Google Scholar

[127] Wang C S, Dai J G, Zhao X X, Li Y L, Graham S A, He D F, Ran B, Meng J. Outward-growth of the Tibetan Plateau during the Cenozoic: A review. Tectonophysics, 2014, 621: 1-43 CrossRef ADS Google Scholar

[128] Wang C S, Li X H, Hu X, Jansa L F. Latest marine horizon north of Qomolangma (Mt Everest): Implications for closure of Tethys seaway and collision tectonics. Terra Nova, 2002, 14: 114-120 CrossRef Google Scholar

[129] Wang C S, Zhao X X, Liu Z F, Lippert P C, Graham S A, Coe R S, Yi H S, Zhu L D, Liu S, Li Y L. Constraints on the early uplift history of the Tibetan Plateau. Proc Natl Acad Sci USA, 2008, 105: 4987-4992 CrossRef PubMed ADS Google Scholar

[130] Wang E Q, Kirby E, Furlong K P, van Soest M, Xu G, Shi X, Kamp P J J, Hodges K V. Two-phase growth of high topography in eastern Tibet during the Cenozoic. Nat Geosci, 2012, 5: 640-645 CrossRef ADS Google Scholar

[131] Wang Q, Wyman D A, Xu J, Dong Y, Vasconcelos P M, Pearson N, Wan Y, Dong H, Li C, Yu Y, Zhu T, Feng X, Zhang Q, Zi F, Chu Z. Eocene melting of subducting continental crust and early uplifting of central Tibet: Evidence from central-western Qiangtang high-K calc-alkaline andesites, dacites and rhyolites. Earth Planet Sci Lett, 2008, 272: 158-171 CrossRef ADS Google Scholar

[132] Wang Y, Deng T, Biasatti D. Ancient diets indicate significant uplift of southern Tibet after ca. 7 Ma. Geology, 2006, 34: 309 CrossRef ADS Google Scholar

[133] Wen D R, Liu D Y, Chung S L, Chu M F, Ji J Q, Zhang Q, Song B, Lee T Y, Yeh M W, Lo C H. Zircon shrimp U-Pb ages of the Gangdese batholith and implications for Neotethyan subduction in southern Tibet. Chem Geol, 2008, 252: 191-201 CrossRef Google Scholar

[134] Williams H, Turner S, Kelley S, Harris N. Age and composition of dikes in Southern Tibet: New constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology, 2001, 29: 339-342 CrossRef Google Scholar

[135] Wu F Y, Ji W Q, Liu C Z, Chung S L. Detrital zircon U-Pb and Hf isotopic data from the Xigaze fore-arc basin: Constraints on Transhimalayan magmatic evolution in southern Tibet. Chem Geol, 2010, 271: 13-25 CrossRef Google Scholar

[136] Wu Z H, Barosh P J, Wu Z H, Hu D G, Zhao X, Ye P S. Vast early Miocene lakes of the central Tibetan Plateau. Geol Soc Am Bull, 2008, 120: 1326-1337 CrossRef ADS Google Scholar

[137] Xu Q, Ding L, Hetzel R, Yue Y, Rades E F. Low elevation of the northern Lhasa terrane in the Eocene: Implications for relief development in south Tibet. Terra Nova, 2015, 27: 458-466 CrossRef Google Scholar

[138] Xu Q, Ding L, Zhang L, Cai F, Lai Q, Yang D, Liu-Zeng J. Paleogene high elevations in the Qiangtang Terrane, central Tibetan Plateau. Earth Planet Sci Lett, 2013, 362: 31-42 CrossRef ADS Google Scholar

[139] Xu Q, Ding L, Zhang L Y, Yang D, Cai F L, Lai Q Z, Liu J, Shi R D. Stable isotopes of modern herbivore tooth enamel in the Tibetan Plateau: Implications for paleoelevation reconstructions. Chin Sci Bull, 2010, 55: 45-54 CrossRef Google Scholar

[140] Xu Q, Hoke G D, Liu-Zeng J, Ding L, Wang W, Yang Y. Stable isotopes of surface water across the Longmenshan margin of the eastern Tibetan Plateau. Geochem Geophys Geosyst, 2014, 15: 3416-3429 CrossRef ADS Google Scholar

[141] Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan Orogen. Annu Rev Earth Planet Sci, 2000, 28: 211-280 CrossRef ADS Google Scholar

[142] Zhang J Y, Yin A, Liu W C, Wu F Y, Lin D, Grove M. Coupled U-Pb dating and Hf isotopic analysis of detrital zircon of modern river sand from the Yalu River (Yarlung Tsangpo) drainage system in southern Tibet: Constraints on the transport processes and evolution of Himalayan rivers. Geol Soc Am Bull, 2012, 124: 1449-1473 CrossRef ADS Google Scholar

[143] Zhang K J, Zhang Y X, Tang X C, Xia B. Late Mesozoic tectonic evolution and growth of the Tibetan Plateau prior to the Indo-Asian collision. Earth-Sci Rev, 2012, 114: 236-249 CrossRef ADS Google Scholar

[144] Zhang P Z, Shen Z, Wang M, Gan W, Bürgmann R, Molnar P, Wang Q, Niu Z, Sun J, Wu J, Hanrong S, Xinzhao Y. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 2004, 32: 809-812 CrossRef ADS Google Scholar

[145] Zhang Q H, Willems H, Ding L. Evolution of the Paleocene-Early Eocene larger benthic foraminifera in the Tethyan Himalaya of Tibet, China. Int J Earth Sci-Geol Rundsch, 2013, 102: 1427-1445 CrossRef ADS Google Scholar

[146] Zhang Q H, Ding L, Cai F L, Xu X X, Zhang L Y, Xu Q, Willems H. Early Cretaceous Gangdese retroarc foreland basin evolution in the Selin Co basin, central Tibet: Evidence from sedimentology and detrital zircon geochronology. Geol Soc Lond Spec Publ, 2011, 353: 27-44 CrossRef ADS Google Scholar

[147] Zheng H B, Clift P D, Wang P, Tada R, Jia J, He M, Jourdan F. Pre-Miocene birth of the Yangtze River. Proc Natl Acad Sci USA, 2013, 110: 7556-7561 CrossRef PubMed ADS Google Scholar

[148] Zheng H, Wei X C, Tada R J, Clift P D, Wang B, Jourdan F, Wang P, He M. Late Oligocene-early Miocene birth of the Taklimakan Desert. Proc Natl Acad Sci USA, 2015, 112: 7662-7667 CrossRef PubMed ADS Google Scholar

[149] Zhu B, Kidd W S F, Rowley D B, Currie B S, Shafique N. Age of initiation of the India-Asia collision in the East-Central Himalaya. J Geol, 2005, 113: 265-285 CrossRef ADS Google Scholar

  • 图 1

    青藏高原大地构造简图

  • 图 2

    青藏高原季风区氧同位素与海拔高度之间的关系

  • 图 3

    青藏高原不同块体新生代古高度变化历史

  • 图 4

    青藏高原南北剖面古高度变化示意图

  • 表 1   青藏高原各块体新生代古高度研究结果

    研究地点

    年代(Ma)

    古高度(m)

    研究方法

    资料来源

    序号

    喜马拉雅地块

    吉隆盆地

    >7

    <2900~3400

    动物牙齿碳同位素

    Wang等(2006)

    1

    6700±700

    化石氧同位素

    Xu等(2010)

    2

    5850(+1410/–730)

    化石氧同位素

    Rowley等(2001)

    3

    塔口拉盆地

    ~7

    4500~6300

    古土壤氧同位素

    Garzione等(2000a)

    4

    5700(+1410/–730)

    古土壤氧同位素

    Rowley等(2001)

    5

    ~11

    3800~5900

    古土壤氧同位素

    Garzione等(2000a)

    6

    6240(+1410/–870)

    古土壤氧同位素

    Rowley等(2001)

    7

    札达盆地

    9

    5400±500

    碳酸盐T47)

    Huntington等(2015)

    8

    ~9

    5600±300

    壳类化石氧同位素

    Saylor等(2009)

    9

    ~4

    4000±300

    壳类化石氧同位素

    Murphy等(2009)

    10

    珠穆朗玛峰

    ~17

    5100~5400

    新生云母氢同位素

    Gébelin等(2013)

    11

    拉萨地块

    南木林盆地

    ~31

    4100(+1200/–1600)

    自生碳酸盐氧同位素

    Currie等(2016)

    12

    15

    5200(+1370/–605)

    古土壤氧同位素

    Currie等(2005)

    13

    5100(+1300/–1900)

    正构烷烃氢同位素

    Currie等(2016)

    14

    4689±895

    叶相多变量分析程序

    Spicer等(2003)

    15

    4638±847

    叶相多变量分析程序

    Spicer等(2003)

    16

    5400±728

    叶相多变量分析程序

    Khan等(2014)

    17

    冈仁波齐

    ~24

    4700~6700

    古土壤氧同位素

    DeCelles等(2011)

    18

    林周盆地

    60~50

    4500±450

    古土壤氧同位素

    Ding等(2014)

    19

    尼玛盆地

    ~26

    4500~4700

    古土壤氧同位素

    DeCelles等(2007a)

    20

    伦坡拉盆地

    40~35

    4850(+380/–460)

    古土壤氧同位素

    Rowley和Currie(2006)

    21

    3600~4100

    正构烷烃氢同位素

    Polissar等(2009)

    22

    23~16

    4260(+475/–575)

    湖相碳酸盐氧同位素

    Rowley和Currie(2006)

    23

    4500~4900

    正构烷烃氢同位素

    Polissar等(2009)

    24

    18~16

    ~3000

    哺乳动物化石

    Deng等(2012)

    25

    23

    3000~3200

    孢粉化石

    Sun等(2014)

    26

    26~23

    2770±530

    正构烷烃氢同位素

    Jia等(2015)

    27

    当惹雍错

    46

    2590(+730/–910)

    古土壤氧同位素

    Xu等(2015)

    28

    羌塘地块

    黑虎岭

    50~28

    5200±600

    古土壤氧同位素

    Xu等(2013)

    29

    芒康盆地

    ~37a)

    3837(+1108/–1574)

    自生湖相碳酸盐

    Li S Y等(2015)

    30

    黎明盆地

    ~37

    2700±300

    自生碳酸盐氧同位素

    Hoke等(2014)

    31

    可可西里地块

    沱沱河盆地

    52~30

    <2000

    湖相碳酸盐氧同位素

    Cyr等(2005)

    32

    55~35

    ~4000

    湖相碳酸盐氧同位素

    Quade等(2011)

    33

    55~35

    2000~2600

    正构烷烃氢同位素

    Polissar等(2009)

    34

    ~35

    2000

    孢粉化石

    Miao等(2016)

    35

    五道梁

    ~23

    4000~4200

    正构烷烃氢同位素

    Polissar等(2009)

    36

    ~19

    1300~2900

    植物化石共存分析法

    Sun B等(2015)

    37

    处新发现的拉屋拉组火山灰夹层U-Pb锆石年龄为~37Ma (数据未发表)