logo

西南天山洋壳高压-超高压变质岩石的俯冲隧道折返机制

More info
  • ReceivedMar 28, 2016
  • AcceptedAug 29, 2016
  • PublishedNov 2, 2016

Abstract


Funded by

国家自然科学基金项目(41390445,41502053,41025008)

中国博士后科学基金项目(2015T80135)


Acknowledgment

主编郑永飞院士的邀稿和建设性意见, 四位审稿人给予的有益建议和探讨, 以及Reiner KLEMD教授对本文的建议和提高, 在此一并致谢. 谨以此文献给西南天山榴辉岩发现二十年.


References

[1] 高俊. 1997. 西南天山榴辉岩的发现及其大地构造意义. 科学通报, 42: 737–740. Google Scholar

[2] 高俊, 龙灵利, 钱青, 黄德志, 苏文, Klemd R. 2006. 南天山: 晚古生代还是三叠纪碰撞造山带? 岩石学报, 22: 1049–1061. Google Scholar

[3] 吕增, 张立飞, 曲军锋, 李慧娟. 2007. 新疆西南天山哈布腾苏一带榴辉岩的岩石学特征及变质作用P-T轨迹. 岩石学报, 23: 1617–1626. Google Scholar

[4] 吕增, 张立飞. 2012. 西南天山阿坦塔义一带片岩和榴辉岩中的柯石英. 科学通报, 57: 683–688. Google Scholar

[5] 夏彬, 张立飞, 夏阳. 2014. 新疆西南天山科克苏河新发现榴辉岩岩石学特征和相平衡研究及其地质意义. 中国科学: 地球科学, 44: 884–900. Google Scholar

[6] 张立飞, 杜瑾雪, 吕增, 杨鑫, 苟龙龙, 夏彬, 陈振宇, 魏春景, 宋述光. 2013. 新疆西南天山超高压变质带的空间分布、峰期变质时代和P-T轨迹特征. 科学通报, 58: 2107–2112. Google Scholar

[7] 张立飞, 高俊, 艾克拜尔, 王宗秀. 2000. 新疆西天山低温榴辉岩相变质作用. 中国科学D辑: 地球科学, 30: 345–355. Google Scholar

[8] 郑永飞. 2008. 超高压变质与大陆碰撞研究进展: 以大别-苏鲁造山带为例. 科学通报, 53: 2129–2152. Google Scholar

[9] 郑永飞, 赵子福, 陈伊翔. 2013. 大陆俯冲隧道过程: 大陆碰撞过程中的板块界面相互作用. 科学通报, 58: 2233–2239. Google Scholar

[10] 郑永飞, 陈伊翔, 戴立群, 赵子福. 2015. 发展板块构造理论: 从洋壳俯冲带到碰撞造山带. 中国科学: 地球科学, 45: 711–735. Google Scholar

[11] 郑永飞, 陈仁旭, 徐峥, 张少兵. 2016. 俯冲带中的水迁移. 中国科学: 地球科学, 46: 253–286. Google Scholar

[12] Agard P, Monie P, Jolivet L, Goffe B. Exhumation of the Schistes Lustres complex: In situ laser probe 40Ar/39Ar constraints and implications for the Western Alps. J Metamorph Geol, 2002, 20: 599-618 CrossRef Google Scholar

[13] Agard P, Yamato P, Jolivet L, Burov E. Exhumation of oceanic blueschists and eclogites in subduction zones: Timing and mechanisms. Earth-Sci Rev, 2009, 92: 53-79 CrossRef ADS Google Scholar

[14] Andersen T B, Jamtveit B, Dewey J F, Swensson E. Subduction and eduction of continental crust: Major mechanisms during continent-continent collision and orogenic extensional collapse, a model based on the south Norwegian Caledonides. Terra Nova, 1991, 3: 303-310 CrossRef Google Scholar

[15] Beaumont C, Jamieson R A, Nguyen M H, Lee B. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature, 2001, 414: 738-742 CrossRef PubMed Google Scholar

[16] Blanco-Quintero I F, Garcia-Casco A, Gerya T V. Tectonic blocks in serpentinite melange (eastern Cuba) reveal large-scale convective flow of the subduction channel. Geology, 2011, 39: 79-82 CrossRef Google Scholar

[17] Brun J P, Faccenna C. Exhumation of high-pressure rocks driven by slab rollback. Earth Planet Sci Lett, 2008, 272: 1-7 CrossRef ADS Google Scholar

[18] Butler J P, Beaumont C, Jamieson R A. Crustal emplacement of exhuming (ultra)high-pressure rocks: Will that be pro- or retro-side?. Geology, 2011, 39: 635-638 CrossRef Google Scholar

[19] Chen Y, Ye K, Wu T F, Guo S. Exhumation of oceanic eclogites: Thermodynamic constraints on pressure, temperature, bulk composition and density. J Metamorph Geol, 2013, 31: 549-570 CrossRef Google Scholar

[20] Chopin C. Coesite and pure pyrope in high-grade blueschists of the Western Alps: A first record and some consequences. Contrib Mineral Petrol, 1984, 86: 107-118 CrossRef ADS Google Scholar

[21] Chopin C. Ultrahigh-pressure metamorphism: Tracing continental crust into the mantle. Earth Planet Sci Lett, 2003, 212: 1-14 CrossRef ADS Google Scholar

[22] Cloos M, Shreve R L. Subduction-channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins: 2. Implications and discussion. Pure Appl Geophys, 1988a, 128: 501-545 CrossRef ADS Google Scholar

[23] Cloos M, Shreve R L. Subduction-channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins: 1. Background and description. Pure Appl Geophys, 1988b, 128: 455-500 CrossRef ADS Google Scholar

[24] Davies J H, von Blanckenburg F. Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet Sci Lett, 1995, 129: 85-102 CrossRef ADS Google Scholar

[25] de Jong K, Wang B, Faure M, Shu L, Cluzel D, Charvet J, Ruffet G, Chen Y. New 40Ar/39Ar age constraints on the Late Palaeozoic tectonic evolution of the western Tianshan (Xinjiang, northwestern China), with emphasis on Permian fluid ingress. Int J Earth Sci-Geol Rundsch, 2009, 98: 1239-1258 CrossRef ADS Google Scholar

[26] de Sigoyer J, Guillot S, Dick P. Exhumation of the ultrahigh-pressure Tso Morari unit in eastern Ladakh (NW Himalaya): A case study. Tectonics, 2004, 23: TC3003 CrossRef ADS Google Scholar

[27] Du J, Zhang L, Lü Z, Chu X. Lawsonite-bearing chloritoid-glaucophane schist from SW Tianshan, China: Phase equilibria and P-T path. J Asian Earth Sci, 2011, 42: 684-693 CrossRef ADS Google Scholar

[28] Du J X, Zhang L F, Shen X J, Bader T. A new P-T-t path of eclogites from Chinese southwestern Tianshan: Constraints from P-T pseudosections and Sm-Nd isochron dating. Lithos, 2014a, 200-201: 258-272 CrossRef ADS Google Scholar

[29] Du J X, Zhang L F, Bader T, Chen Z Y, Lü Z. Metamorphic evolution of relict lawsonite-bearing eclogites from the (U) HP metamorphic belt in the Chinese southwestern Tianshan. J Metamorph Geol, 2014b, 32: 575-598 CrossRef Google Scholar

[30] Du J X, Zhang L F, Bader T, Shen T T. Metamorphic evolution of ultrahigh-pressure rocks from Chinese southwestern Tianshan and a possible indicator of UHP metamorphism using garnet composition in low-T eclogites. J Asian Earth Sci, 2014c, 91: 69-88 CrossRef ADS Google Scholar

[31] Ernst W G, Maruyama S, Wallis S. Buoyancy-driven, rapid exhumation of ultrahigh-pressure metamorphosed continental crust. Proc Natl Acad Sci USA, 1997, 94: 9532-9537 CrossRef ADS Google Scholar

[32] Federico L, Crispini L, Scambelluri M, Capponi G. Ophiolite mélange zone records exhumation in a fossil subduction channel. Geology, 2007, 35: 499-502 CrossRef ADS Google Scholar

[33] Gao J, Klemd R. 2000. Eclogite occurrences in the Southern Tianshan high-pressure belt, Xinjiang, Western China. Gondwana Res, 3: 33–38. Google Scholar

[34] Gao J, Klemd R. Primary fluids entrapped at blueschist to eclogite transition: Evidence from the Tianshan meta-subduction complex in northwestern China. Contrib Mineral Petrol, 2001, 142: 1-14 CrossRef ADS Google Scholar

[35] Gao J, Klemd R. Formation of HP-LT rocks and their tectonic implications in the western Tianshan Orogen, NW China: Geochemical and age constraints. Lithos, 2003, 66: 1-22 CrossRef ADS Google Scholar

[36] Gao J, He G, Li M, Xiao X, Tang Y, Wang J, Zhao M. The mineralogy, petrology, metamorphic PTDt trajectory and exhumation mechanism of blueschists, south Tianshan, northwestern China. Tectonophysics, 1995, 250: 151-168 CrossRef ADS Google Scholar

[37] Gao J, Li M S, Xiao X C, Tang Y Q, He G Q. 1998. Paleozoic tectonic evolution of the Tianshan Orogen, northwestern China. Tectonophysics, 287: 213–231. Google Scholar

[38] Gao , Klemd , Zhang , Wang , Xiao . P-T path of high-pressure/low-temperature rocks and tectonic implications in the western Tianshan Mountains, NW China. J Metamorph Geol, 1999, 17: 621-636 CrossRef Google Scholar

[39] Gao J, Long L, Klemd R, Qian Q, Liu D, Xiong X, Su W, Liu W, Wang Y, Yang F. Tectonic evolution of the South Tianshan orogen and adjacent regions, NW China: Geochemical and age constraints of granitoid rocks. Int J Earth Sci-Geol Rundsch, 2009, 98: 1221-1238 CrossRef ADS Google Scholar

[40] Gao J, Klemd R, Qian Q, Zhang X, Li J, Jiang T, Yang Y. The collision between the Yili and Tarim blocks of the Southwestern Altaids: Geochemical and age constraints of a leucogranite dike crosscutting the HP-LT metamorphic belt in the Chinese Tianshan Orogen. Tectonophysics, 2011, 499: 118-131 CrossRef ADS Google Scholar

[41] Garcia-Casco A, Torres-Roldan R L, Millan G, Monie P, Schneider J. Oscillatory zoning in eclogitic garnet and amphibole, Northern Serpentinite Melange, Cuba: A record of tectonic instability during subduction?. J Metamorph Geol, 2002, 20: 581-598 CrossRef Google Scholar

[42] Gerya T V, Stöckhert B, Perchuk A L. Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation. Tectonics, 2002, 21: 6-1-6-19 CrossRef ADS Google Scholar

[43] Groppo C, Beltrando M, Compagnoni R. TheP-T path of the ultra-high pressure Lago Di Cignana and adjoining high-pressure meta-ophiolitic units: Insights into the evolution of the subducting Tethyan slab. J Metamorph Geol, 2009, 27: 207-231 CrossRef Google Scholar

[44] Grujic D, Warren C J, Wooden J L. Rapid synconvergent exhumation of Miocene-aged lower orogenic crust in the eastern Himalaya. Lithosphere, 2011, 3: 346-366 CrossRef ADS Google Scholar

[45] Guillot S, Hattori K, Agard P, Schwartz S, Vidal O. 2009. Exhumation processes in oceanic and continental subduction contexts: A review. In: Lallemand S, Funiciello F, eds. Subduction Zone Geodynamics. Berlin-Heidelberg: Springer. 175–205. Google Scholar

[46] Hacker B R, Gerya T V. Paradigms, new and old, for ultrahigh-pressure tectonism. Tectonophysics, 2013, 603: 79-88 CrossRef ADS Google Scholar

[47] Hegner E, Klemd R, Kroner A, Corsini M, Alexeiev D V, Iaccheri L M, Zack T, Dulski P, Xia X, Windley B F. Mineral ages and P-T conditions of Late Paleozoic high-pressure eclogite and provenance of melange sediments from Atbashi in the south Tianshan orogen of Kyrgyzstan. Am J Sci, 2010, 310: 916-950 CrossRef Google Scholar

[48] Hermann J, Müntener O, Scambelluri M. The importance of serpentinite mylonites for subduction and exhumation of oceanic crust. Tectonophysics, 2000, 327: 225-238 CrossRef ADS Google Scholar

[49] Jiang T, Gao J, Klemd R, Qian Q, Zhang X, Xiong X, Wang X, Tan Z, Chen B. Paleozoic ophiolitic mélanges from the South Tianshan Orogen, NW China: Geological, geochemical and geochronological implications for the geodynamic setting. Tectonophysics, 2014, 612-613: 106-127 CrossRef ADS Google Scholar

[50] John T, Klemd R, Gao J, Garbe-Schönberg C D. Trace-element mobilization in slabs due to non steady-state fluid-rock interaction: Constraints from an eclogite-facies transport vein in blueschist (Tianshan, China). Lithos, 2008, 103: 1-24 CrossRef ADS Google Scholar

[51] John T, Gussone N, Podladchikov Y Y, Bebout G E, Dohmen R, Halama R, Klemd R, Magna T, Seitz H M. Volcanic arcs fed by rapid pulsed fluid flow through subducting slabs. Nat Geosci, 2012, 5: 489-492 CrossRef ADS Google Scholar

[52] Klemd R. 2003. Ultrahigh-pressure metamorphism in eclogites from the western Tianshan high-pressure belt (Xinjiang, western China)—Comment. Am Miner, 88: 1153–1156. Google Scholar

[53] Klemd R, Schröter F C, Will T M, Gao J. P-T evolution of glaucophane-omphacite bearing HP-LT rocks in the western Tianshan Orogen, NW China: New evidence for ‘Alpine-type’ tectonics. J Metamorph Geol, 2002, 20: 239-254 CrossRef Google Scholar

[54] Klemd R, Bröcker M, Hacker B R, Gao J, Gans P, Wemmer K. New age constraints on the metamorphic evolution of the high-pressure/low-temperature belt in the Western Tianshan Mountains, NW China. J Geol, 2005, 113: 157-168 CrossRef ADS Google Scholar

[55] Klemd R, John T, Scherer E E, Rondenay S, Gao J. Changes in dip of subducted slabs at depth: Petrological and geochronological evidence from HP-UHP rocks (Tianshan, NW-China). Earth Planet Sci Lett, 2011, 310: 9-20 CrossRef ADS Google Scholar

[56] Klemd R, Gao J, Li J L, Meyer M. Metamorphic evolution of (ultra)-high-pressure subduction-related transient crust in the South Tianshan Orogen (Central Asian Orogenic Belt): Geodynamic implications. Gondwana Res, 2015, 28: 1-25 CrossRef Google Scholar

[57] Krebs M, Schertl H P, Maresch W V, Draper G. Mass flow in serpentinite-hosted subduction channels: P-T-t path patterns of metamorphic blocks in the Rio San Juan mélange (Dominican Republic). J Asian Earth Sci, 2011, 42: 569-595 CrossRef ADS Google Scholar

[58] Kylander-Clark A R C, Hacker B R, Mattinson C G. Size and exhumation rate of ultrahigh-pressure terranes linked to orogenic stage. Earth Planet Sci Lett, 2012, 321-322: 115-120 CrossRef ADS Google Scholar

[59] Li J L, Klemd R, Gao J, Meyer M. Coexisting carbonate-bearing eclogite and blueschist in SW Tianshan, China: Petrology and phase equilibria. J Asian Earth Sci, 2012, 60: 174-187 CrossRef ADS Google Scholar

[60] Li J L, Gao J, John T, Klemd R, Su W. Fluid-mediated metal transport in subduction zones and its link to arc-related giant ore deposits: Constraints from a sulfide-bearing HP vein in lawsonite eclogite (Tianshan, China). Geochim Cosmochim Acta, 2013, 120: 326-362 CrossRef ADS Google Scholar

[61] Li J L, Klemd R, Gao J, Meyer M. Compositional zoning in dolomite from lawsonite-bearing eclogite (SW Tianshan, China): Evidence for prograde metamorphism during subduction of oceanic crust. Am Miner, 2014, 99: 206-217 CrossRef ADS Google Scholar

[62] Li J L, Klemd R, Gao J, Jiang T, Song Y H. A common high-pressure metamorphic evolution of interlayered eclogites and metasediments from the ‘ultrahigh-pressure unit’ of the Tianshan metamorphic belt in China. Lithos, 2015, 226: 169-182 CrossRef ADS Google Scholar

[63] Li J L, Klemd R, Gao J, John T. Poly-cyclic metamorphic evolution of eclogite: Evidence for multistage burial-exhumation cycling in a subduction channel. J Petrol, 2016a, 57: 119-146 CrossRef Google Scholar

[64] Li J L, Gao J, Klemd R, John T, Wang X S. Redox processes in subducting oceanic crust recorded by sulfide-bearing high-pressure rocks and veins (SW Tianshan, China). Contrib Mineral Petrol, 2016b, 171: 72 CrossRef ADS Google Scholar

[65] Li Q, Lin W, Su W, Li X, Shi Y, Liu Y, Tang G. SIMS U-Pb rutile age of low-temperature eclogites from southwestern Chinese Tianshan, NW China. Lithos, 2011, 122: 76-86 CrossRef ADS Google Scholar

[66] Li X P, Zhang L F, Wilde S A, Song B, Liu X M. Zircons from rodingite in the Western Tianshan serpentinite complex: Mineral chemistry and U-Pb ages define nature and timing of rodingitization. Lithos, 2010, 118: 17-34 CrossRef ADS Google Scholar

[67] Li Z, Gerya T V. Polyphase formation and exhumation of high- to ultrahigh-pressure rocks in continental subduction zone: Numerical modeling and application to the Sulu ultrahigh-pressure terrane in eastern China. J Geophys Res, 2009, 114: B09406 CrossRef ADS Google Scholar

[68] Liou J G, Ernst W G, Zhang R Y, Tsujimori T, Jahn B M. Ultrahigh-pressure minerals and metamorphic terranes—The view from China. J Asian Earth Sci, 2009, 35: 199-231 CrossRef ADS Google Scholar

[69] Liu X, Su W, Gao J, Li J L, Jiang T, Zhang X, Ge X M. Paleozoic subduction erosion involving accretionary wedge sediments in the South Tianshan Orogen: Evidence from geochronological and geochemical studies on eclogites and their host metasediments. Lithos, 2014, 210-211: 89-110 CrossRef ADS Google Scholar

[70] Lü Z, Zhang L, Du J, Bucher K. Coesite inclusions in garnet from eclogitic rocks in western Tianshan, northwest China: Convincing proof of UHP metamorphism. Am Miner, 2008, 93: 1845-1850 CrossRef ADS Google Scholar

[71] Lü Z, Zhang L, Du J, Bucher K. Petrology of coesite-bearing eclogite from Habutengsu Valley, western Tianshan, NW China and its tectonometamorphic implication. J Metamorph Geol, 2009, 27: 773-787 CrossRef Google Scholar

[72] Lü Z, Bucher K, Zhang L, Du J. The Habutengsu metapelites and metagreywackes in western Tianshan, China: Metamorphic evolution and tectonic implications. J Metamorph Geol, 2012a, 30: 907-926 CrossRef Google Scholar

[73] Lü Z, Zhang L, Du J, Yang X, Tian Z, Xia B. Petrology of HP metamorphic veins in coesite-bearing eclogite from western Tianshan, China: Fluid processes and elemental mobility during exhumation in a cold subduction zone. Lithos, 2012b, 136-139: 168-186 CrossRef ADS Google Scholar

[74] Lü Z, Bucher K, Zhang L. Omphacite-bearing calcite marble and associated coesite-bearing pelitic schist from the meta-ophiolitic belt of Chinese western Tianshan. J Asian Earth Sci, 2013, 76: 37-47 CrossRef ADS Google Scholar

[75] Lü Z, Zhang L, Chen Z. Jadeite- and dolomite-bearing coesite eclogite from western Tianshan, NW China. Eur J Mineral, 2014, 26: 245-256 CrossRef Google Scholar

[76] Malusa M G, Faccenna C, Garzanti E, Polino R. 2011. Divergence in subduction zones and exhumation of high pressure rocks (Eocene Western Alps). Earth Planet Sci Lett, 310: 21–32. Google Scholar

[77] Meyer M, Klemd R, John T, Gao J, Menneken M. An (in-)coherent metamorphic evolution of high-P eclogites and their host rocks in the Chinese southwest Tianshan?. J Metamorph Geol, 2016, 34: 121-146 CrossRef Google Scholar

[78] Niu Y. 2014. Geological understanding of plate tectonics: Basic concepts, illustrations, examples and new perspectives. Glob Tectonic Metal, 10: 23–47. Google Scholar

[79] Parrish R R, Gough S J, Searle M P, Waters D J. Plate velocity exhumation of ultrahigh-pressure eclogites in the Pakistan Himalaya. Geology, 2006, 34: 989-992 CrossRef ADS Google Scholar

[80] Peacock S A. Fluid processes in subduction zones. Science, 1990, 248: 329-337 CrossRef PubMed ADS Google Scholar

[81] Rubatto D, Hermann J. 2001. Exhumation as fast as subduction? Geology, 29: 3–6. Google Scholar

[82] Rubatto D, Regis D, Hermann J, Boston K, Engi M, Beltrando M, McAlpine S R B. Yo-yo subduction recorded by accessory minerals in the Italian Western Alps. Nat Geosci, 2011, 4: 338-342 CrossRef ADS Google Scholar

[83] Safonova I, Biske G, Romer R L, Seltmann R, Simonov V, Maruyama S. Middle Paleozoic mafic magmatism and ocean plate stratigraphy of the South Tianshan, Kyrgyzstan. Gondwana Res, 2016, 30: 236-256 CrossRef Google Scholar

[84] Shen T, Hermann J, Zhang L, Lü Z, Padrón-Navarta J A, Xia B, Bader T. UHP Metamorphism Documented in Ti-chondrodite- and Ti-clinohumite-bearing Serpentinized Ultramafic Rocks from Chinese Southwestern Tianshan. J Petrol, 2015, 56: 1425-1458 CrossRef Google Scholar

[85] Shreve R L, Cloos M. Dynamics of sediment subduction, melange formation, and prism accretion. J Geophys Res, 1986, 91: 10229 CrossRef ADS Google Scholar

[86] Smith D C. Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature, 1984, 310: 641-644 CrossRef ADS Google Scholar

[87] Sobolev N V, Shatsky V S. Diamond inclusions in garnets from metamorphic rocks: A new environment for diamond formation. Nature, 1990, 343: 742-746 CrossRef ADS Google Scholar

[88] Su W, Gao J, Klemd R, Li J L, Zhang X, Li X H, Chen N S, Zhang L. U-Pb zircon geochronology of Tianshan eclogites in NW China: Implication for the collision between the Yili and Tarim blocks of the southwestern Altaids. Eur J Mineral, 2010, 22: 473-478 CrossRef Google Scholar

[89] Syracuse E M, van Keken P E, Abers G A, Suetsugu D, Bina C, Inoue T, Wiens D, Jellinek M. The global range of subduction zone thermal models. Phys Earth Planet Inter, 2010, 183: 73-90 CrossRef ADS Google Scholar

[90] Tian Z L, Wei C J. Metamorphism of ultrahigh-pressure eclogites from the Kebuerte Valley, South Tianshan, NW China: Phase equilibria and P-T path. J Metamorph Geol, 2013, 31: 281-300 CrossRef Google Scholar

[91] Tian Z L, Wei C J. Coexistence of garnet blueschist and eclogite in South Tianshan, NW China: Dependence of P-T evolution and bulk-rock composition. J Metamorph Geol, 2014, 32: 743-764 CrossRef Google Scholar

[92] van der Straaten F, Schenk V, John T, Gao J. 2008. Blueschist-facies rehydration of eclogites (Tian Shan, NW-China): Implications for fluid-rock interaction in the subduction channel. Chem Geol, 255: 195–219. Google Scholar

[93] van der Straaten F, Halama R, John T, Schenk V, Hauff F, Andersen N. Tracing the effects of high-pressure metasomatic fluids and seawater alteration in blueschist-facies overprinted eclogites: Implications for subduction channel processes. Chem Geol, 2012, 292-293: 69-87 CrossRef Google Scholar

[94] Volkova N I, Budanov V I. Geochemical discrimination of metabasalt rocks of the Fan-Karategin transitional blueschist/greenschist belt, South Tianshan, Tajikistan: Seamount volcanism and accretionary tectonics. Lithos, 1999, 47: 201-216 CrossRef ADS Google Scholar

[95] Warren C J, Beaumont C, Jamieson R A. Modelling tectonic styles and ultra-high pressure (UHP) rock exhumation during the transition from oceanic subduction to continental collision. Earth Planet Sci Lett, 2008, 267: 129-145 CrossRef ADS Google Scholar

[96] Warren C J. Exhumation of (ultra-)high-pressure terranes: Concepts and mechanisms. Solid Earth, 2013, 4: 75-92 CrossRef ADS Google Scholar

[97] Wei C J, Powell R, Zhang L F. Eclogites from the south Tianshan, NW China: Petrological characteristic and calculated mineral equilibria in the Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O system. J Metamorph Geol, 2003, 21: 163-179 CrossRef Google Scholar

[98] Wei C, Wang W, Clarke G L, Zhang L, Song S. Metamorphism of high/ultrahigh-pressure pelitic-felsic Schist in the South Tianshan Orogen, NW China: Phase equilibria and P-T path. J Petrol, 2009, 50: 1973-1991 CrossRef Google Scholar

[99] Whitney D L, Evans B W. Abbreviations for names of rock-forming minerals. Am Miner, 2010, 95: 185-187 CrossRef ADS Google Scholar

[100] Xu S T, Okay A I, Ji S Y, Sengor A M C, Wen S, Liu Y C, Jiang L L. 1992. Diamond from the dabie shan metamorphic rocks and its implication for tectonic setting. Science, 256: 80–82. Google Scholar

[101] Yamato P, Agard P, Burov E, Le Pourhiet L, Jolivet L, Tiberi C. Burial and exhumation in a subduction wedge: Mutual constraints from thermomechanical modeling and natural P-T-t data (Schistes Lustrés, western Alps). J Geophys Res, 2007, 112: B07410 CrossRef ADS Google Scholar

[102] Yang X, Zhang L, Tian Z, Bader T. Petrology and U-Pb zircon dating of coesite-bearing metapelite from the Kebuerte Valley, Western Tianshan, China. J Asian Earth Sci, 2013, 70-71: 295-307 CrossRef ADS Google Scholar

[103] Ye K, Cong B, Ye D. The possible subduction of continental material to depths greater than 200 km. Nature, 2000, 407: 734-736 CrossRef PubMed Google Scholar

[104] Zhang J X, Li J P, Yu S Y, Meng F C, Mattinson C G, Yang H J, Ker C M. Provenance of eclogitic metasediments in the north Qilian HP/LT metamorphic terrane, western China: Geodynamic implications for early Paleozoic subduction-erosion. Tectonophysics, 2012, 570-571: 78-101 CrossRef ADS Google Scholar

[105] Zhang L, Chen R X, Zheng Y F, Li W C, Hu Z, Yang Y, Tang H. The tectonic transition from oceanic subduction to continental subduction: Zirconological constraints from two types of eclogites in the North Qaidam orogen, northern Tibet. Lithos, 2016, 244: 122-139 CrossRef ADS Google Scholar

[106] Zhang L, Ellis D J, Jiang W. Ultrahigh-pressure metamorphism in western Tianshan, China: Part I. Evidence from inclusions of coesite pseudomorphs in garnet and from quartz exsolution lamellae in omphacite in eclogites. Am Miner, 2002a, 87: 853-860 CrossRef ADS Google Scholar

[107] Zhang L, Ellis D J, Williams S, Jiang W. Ultra-high pressure metamorphism in western Tianshan, China: Part II. Evidence from magnesite in eclogite. Am Miner, 2002b, 87: 861-866 CrossRef ADS Google Scholar

[108] Zhang L F, Ellis D, Williams S, Jiang W B. 2003. Ultrahigh-pressure metamorphism in eclogites from the western Tianshan, China-Reply. Am Miner, 88: 1157–1160. Google Scholar

[109] Zhang L, Song S, Liou J G, Ai Y, Li X. Relict coesite exsolution in omphacite from Western Tianshan eclogites, China. Am Miner, 2005, 90: 181-186 CrossRef ADS Google Scholar

[110] Zhang L, Ai Y, Li X, Rubatto D, Song B, Williams S, Song S, Ellis D, Liou J G. Triassic collision of western Tianshan orogenic belt, China: Evidence from SHRIMP U-Pb dating of zircon from HP/UHP eclogitic rocks. Lithos, 2007, 96: 266-280 CrossRef ADS Google Scholar

[111] Zheng Y F. Metamorphic chemical geodynamics in continental subduction zones. Chem Geol, 2012, 328: 5-48 CrossRef Google Scholar

[112] Zheng Y F, Chen R X, Zhao Z F. Chemical geodynamics of continental subduction-zone metamorphism: Insights from studies of the Chinese Continental Scientific Drilling (CCSD) core samples. Tectonophysics, 2009, 475: 327-358 CrossRef ADS Google Scholar

[113] Zheng Y F, Zhang L, McClelland W C, Cuthbert S. Processes in continental collision zones: Preface. Lithos, 2012, 136-139: 1-9 CrossRef ADS Google Scholar

[114] Zhou L G, Xia Q X, Zheng Y F, Chen R X, Hu Z, Yang Y. Tectonic evolution from oceanic subduction to continental collision during the closure of Paleotethyan ocean: Geochronological and geochemical constraints from metamorphic rocks in the Hong’an orogen. Gondwana Res, 2015, 28: 348-370 CrossRef Google Scholar