logo

SCIENTIA SINICA Technologica, Volume 49 , Issue 12 : 1429-1441(2019) https://doi.org/10.1360/N092018-00365

Research progress on the thermodynamic properties (PVTx) of a CO2-CH4 mixture system

More info
  • ReceivedNov 12, 2018
  • AcceptedApr 22, 2019
  • PublishedJun 25, 2019

Abstract

In applications of enhanced unconventional natural gas extraction by CO2, the thermodynamic properties study of the CO2-CH4 mixture system is of great significance for the flow, diffusion, and migration of CO2-natural gas fluid in gas reservoirs. This work reviews the status of the pressure-volume-temperature-composition (PVTx) experimental research for a CO2-CH4 system based on compressibility factor and density/volume methods, and modeling research on various types of thermodynamic equations of state. We also summarize the shortcomings of the existing research and point out study trends for future research. It is proposed in this work that the experimental measurement of high-precision density data of a CO2-CH4 system be conducted under high-temperature and ultra-high-pressure conditions corresponding to deep and ultra-deep gas reservoirs. The experimental density data for a CO2-CH4 system with a high CO2 concentration (x>0.90) in the vicinity of the critical point are also urgently required. The equation of state applicable to the above temperature and pressure conditions should be established or developed to accurately predict the thermodynamic properties of the system. The thermodynamic properties study of CO2-CH4 corresponding to enhanced unconventional natural gas extraction by CO2 in this work will provide a reference and guidance for future study of the thermodynamic properties of CO2-underground fluid mixture systems.


Funded by

国家自然科学基金(U1762216)

国家重点研发计划(2017YFC0307304)

国家重点基础研究发展计划(2015CB251200)


References

[1] Eshkalak M O, Al-Shalabi E W, Sanaei A, et al. Simulation study on the CO2-driven enhanced gas recovery with sequestration versus the re-fracturing treatment of horizontal wells in the U.S. unconventional shale reservoirs. J Nat Gas Sci Eng, 2014, 21: 1015-1024 CrossRef Google Scholar

[2] Godec M, Koperna G, Petrusak R, et al. Enhanced gas recovery and CO2 storage in gas shales: A summary review of its status and potential. Energy Procedia, 2014, 63: 5849-5857 CrossRef Google Scholar

[3] Van der Burgt M, Cantle J, Boutkan V. Carbon dioxide disposal from coal-based IGCC’s in depleted gas fields. Energy Convers Manage, 1992, 33: 603-610 CrossRef Google Scholar

[4] Oldenburg C M, Stevens S H, Benson S M. Economic feasibility of carbon sequestration with enhanced gas recovery (CSEGR). Energy, 2004, 29: 1413-1422 CrossRef Google Scholar

[5] Xie H, Li X, Fang Z, et al. Carbon geological utilization and storage in China: Current status and perspectives. Acta Geotech, 2014, 9: 7-27 CrossRef Google Scholar

[6] Gunter W D, Gentzis T, Rottenfusser B A, et al. Deep coalbed methane in Alberta, Canada: A fuel resource with the potential of zero greenhouse gas emissions. Energy Convers Manage, 1997, 38: S217-S222 CrossRef Google Scholar

[7] 孙扬. 天然气藏超临界CO2埋存及提高天然气采收率机理. 博士学位论文. 成都: 西南石油大学, 2012. Google Scholar

[8] Clemens T, Wit K. CO2 enhanced gas recovery studied for an example gas reservoir. In: Proceedings of the SPE Annual Technical Conference and Exhibition. San Antonio, 2002. Google Scholar

[9] Guo P, Jing S S, Peng C Z. Technologies and countermeasures for gas recovery enhancement. Nat Gas Indust B, 2014, 1: 96-102 CrossRef Google Scholar

[10] 谭羽非, 林涛. CO2做地下储气库垫层气的数值模拟研究. 见: 2007多相流学术会议论文集. 大庆, 2007. Google Scholar

[11] Reamer H H, Olds R H, Sage B H, et al. Phase equilibrium in hydrocarbon systems. Methane-carbon dioxide system in the gaseous region. Ind Eng Chem, 1944, 36: 88-90 CrossRef Google Scholar

[12] Beer H. Compressibility factors for the argon-carbon dioxide system. Can J Chem Eng, 1969, 47: 92-94 CrossRef Google Scholar

[13] 童景山, 刘裕品. 高压下CO2-CH4混合气体的PVT试验及数据关联. 工程热物理学报, 1984, 2: 119–124. Google Scholar

[14] Magee J W, Ely J F. Isochoric (p, v, T) measurements on CO2 and (0.98 CO2+0.02 CH4) from 225 to 400 K and pressures to 35 MPa. Int J Thermophys, 1988, 9: 547-557 CrossRef ADS Google Scholar

[15] Simon R, Fesmire C J, Dicharry R M, et al. Compressibility factors for CO2-methane mixtures. J Pet Tech, 1977, 29: 81-85 CrossRef Google Scholar

[16] McElroy P J, Battino R, Dowd M K. Compression-factor measurements on methane, carbon dioxide, and (methane+carbon dioxide) using a weighing method. J Chem Thermodyn, 1989, 21: 1287-1300 CrossRef Google Scholar

[17] Brugge H B, Hwang C A, Rogers W J, et al. Experimental cross virial coefficients for binary mixtures of carbon dioxide with nitrogen, methane and ethane at 300 and 320 K. Phys A-Statist Mech Appl, 1989, 156: 382-416 CrossRef ADS Google Scholar

[18] Esper G J, Bailey D M, Holste J C, et al. Volumetric behavior of near-equimolar mixtures for CO2+CH4 and CO2+N2. Fluid Phase Equilib, 1989, 49: 35-47 CrossRef Google Scholar

[19] Mallu B V, Viswanath D S. Compression factors and second virial coefficients of H2, CH4, (xCO2+(1−x)H2), and (xCO2+(1−x)CH4). J Chem Thermodyn, 1990, 22: 997-1006 CrossRef Google Scholar

[20] Burnett E. S. Compressibility determinations without volume measurements. [Apparatus to determine compressibility with pressure and temperature measurements]. Technical Report. Bureau of Mines, Amarillo, TX, 1936. Google Scholar

[21] 杨喜, 祁影霞, 陈伟, 等. 近共沸制冷剂R290/R134a PVTx性质的实验研究. 制冷学报, 2014, 2: 76–81. Google Scholar

[22] Seitz J C, Blencoe J G, Joyce D B, et al. Volumetric properties of CO2CH4N2 fluids at 200°C and 1000 bars: A comparison of equations of state and experimental data. Geochim Cosmochim Acta, 1994, 58: 1065-1071 CrossRef ADS Google Scholar

[23] Seitz J C, Blencoe J G. Volumetric properties for {(1–x)CO2+xCH4},{(1−x)CO2+xN2}, and {(1−x)CH4+xN2} at the preessures (19.94, 29.94, 39.94, 59.93, 79.93, and 99.93) MPa and the temperature 673.15 K. J Chem Thermodyn, 1996, 28: 1207-1213 CrossRef Google Scholar

[24] Seitz J C, Blencoe J G, Bodnar R J. Volumetric properties for {(1−x)CO2+xCH4}, {(1−x)CO2+xN2}, and {(1−x)CH4+xN2} at the pressures (9.94, 19.94, 29.94, 39.94, 59.93, 79.93, and 99.93) MPa and temperatures (323.15, 373.15, 473.15, and 573.15) K. J Chem Thermodyn, 1996, 28: 521-538 CrossRef Google Scholar

[25] Blanco S T, Rivas C, Fernández J, et al. Influence of methane in CO2 transport and storage for CCS technology. Environ Sci Technol, 2012, 46: 13016-13023 CrossRef PubMed ADS Google Scholar

[26] Rivas C, Blanco S T, Fernández J, et al. Influence of methane and carbon monoxide in the volumetric behaviour of the anthropogenic CO2: Experimental data and modelling in the critical region. Int J Greenh Gas Control, 2013, 18: 264-276 CrossRef Google Scholar

[27] Mondéjar M E, Fernández-Vicente T E, Haloua F, et al. Experimental determination of ( p, ρ, T€) data for three mixtures of carbon dioxide with methane for the thermodynamic characterization of nonconventional energy gases. J Chem Eng Data, 2012, 57: 2581-2588 CrossRef Google Scholar

[28] Yang X, Wang Z, Li Z. Accurate density measurements on a binary mixture (carbon dioxide + methane) at the vicinity of the critical point in the supercritical state by a single-sinker densimeter. Fluid Phase Equilib, 2016, 418: 94-99 CrossRef Google Scholar

[29] Liu S, Zhang Y, Chi Y, et al. Density characteristics of CO2-CH4 binary mixtures at temperatures from (300 to 308.15) K and pressures from (2 to 18) MPa. J Chem Thermodyn, 2017, 106: 1-9 CrossRef Google Scholar

[30] Liu S, Zhao C, Lv J, et al. Density characteristics of the CO2-CH4 binary system: Experimental data at 313–353 K and 3–18 MPa and modeling from the PC-SAFT EoS. J Chem Eng Data, 2018, 63: 4368-4380 CrossRef Google Scholar

[31] Arai Y, Kaminishi G I, Saito S. The experimental determination of the P-V-T-x relations for the carbon dioxide-nitrogen and the carbon dioxide-methane systems. J Chem Eng Jpn, 1971, 4: 113-122 CrossRef Google Scholar

[32] Hwang C A, Iglesias-Silva G A, Holste J C, et al. Densities of carbon dioxide + methane mixtures from 225 K to 350 K at pressures up to 35 MPa. J Chem Eng Data, 1997, 42: 897-899 CrossRef Google Scholar

[33] 王国文, 李长海. 振动管式液体密度计的原理,电路组成及应用. 电测与仪表, 1998, 6: 16–18. Google Scholar

[34] Klimeck J, Kleinrahm R, Wagner W. An accurate single-sinker densimeter and measurements of the (p, ρ, T) relation of argon and nitrogen in the temperature range from (235 to 520) K at pressures up to 30 MPa. J Chem Thermodyn, 1998, 30: 1571-1588 CrossRef Google Scholar

[35] McLinden M O, Kleinrahm R, Wagner W. Force transmission errors in magnetic suspension densimeters. Int J Thermophys, 2007, 28: 429-448 CrossRef ADS Google Scholar

[36] Cristancho D E, Mantilla I D, Ejaz S, et al. Force transmission error analysis for a high-pressure single-sinker magnetic suspension densimeter. Int J Thermophys, 2010, 31: 698-709 CrossRef ADS Google Scholar

[37] Mao S, Lü M, Shi Z. Prediction of the PVTx and VLE properties of natural gases with a general Helmholtz equation of state. Part I: Application to the CH4-C2H6-C3H8-CO2-N2 system. Geochim Cosmochim Acta, 2017, 219: 74-95 CrossRef ADS Google Scholar

[38] Yang Z, Gong M Q, Zhou Y, et al. Vapor-liquid equilibria of CH4, CO2 and their binary system CH4+CO2: A comparison between the molecular simulation and equation of state. Sci China Tech Sci, 2015, 58: 650-658 CrossRef Google Scholar

[39] Tong J S, Liu Y P. The experimental study and correlation of PVT relation of binary gas mixture of carbon dioxide-methane. J Eng Thermophys, 1984, 5: 119–124. Google Scholar

[40] Li H, Jakobsen J P, Wilhelmsen Ø, et al. PVTxy properties of CO2 mixtures relevant for CO2 capture, transport and storage: Review of available experimental data and theoretical models. Appl Energy, 2011, 88: 3567-3579 CrossRef Google Scholar

[41] van der Waals J D. On the continuity of the gaseous and liquid states. Dissertation for Doctoral Degree. Leiden: Universiteit Leiden, 1873. Google Scholar

[42] Redlich O, Kwong J N S. On the thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions. Chem Rev, 1949, 44: 233-244 CrossRef Google Scholar

[43] Soave G. Equilibrium constants from a modified Redlich-Kwong equation of state. Chem Eng Sci, 1972, 27: 1197-1203 CrossRef Google Scholar

[44] Peng D Y, Robinson D B. A new two-constant equation of state. Ind Eng Chem Fund, 1976, 15: 59-64 CrossRef Google Scholar

[45] Al-Sahhaf T A. Vapor-liquid equilibria for the ternary system N2+CO2+CH4 at 230 and 250 K. Fluid Phase Equilib, 1990, 55: 159-172 CrossRef Google Scholar

[46] Patel N C, Teja A S. A new cubic equation of state for fluids and fluid mixtures. Chem Eng Sci, 1982, 37: 463-473 CrossRef Google Scholar

[47] Thiery R, Vidal J, Dubessy J. Phase equilibria modelling applied to fluid inclusions: Liquid-vapour equilibria and calculation of the molar volume in the CO2-CH4-N2 system. Geochim Cosmochim Acta, 1994, 58: 1073-1082 CrossRef ADS Google Scholar

[48] Duan Z, Hu J. A new cubic equation of state and its applications to the modeling of vapor-liquid equilibria and volumetric properties of natural fluids. Geochim Cosmochim Acta, 2004, 68: 2997-3009 CrossRef ADS Google Scholar

[49] Li H L. Thermodynamic properties of CO2 mixtures and their applications in advanced power cycles with CO2 capture processes. Dissertation for Doctoral Degree. Stockholm, Sweden: Royal Institute of Technology, 2008. Google Scholar

[50] Li H, Yan J. Evaluating cubic equations of state for calculation of vapor-liquid equilibrium of CO2 and CO2-mixtures for CO2 capture and storage processes. Appl Energy, 2009, 86: 826-836 CrossRef Google Scholar

[51] Li H, Yan J. Impacts of equations of state (EOS) and impurities on the volume calculation of CO2 mixtures in the applications of CO2 capture and storage (CCS) processes. Appl Energy, 2009, 86: 2760-2770 CrossRef Google Scholar

[52] Yu J M, Lu B C Y, Iwai Y. Simultaneous calculations of VLE and saturated liquid and vapor volumes by means of a 3P1T cubic EOS. Fluid Phase Equilib, 1987, 37: 207-222 CrossRef Google Scholar

[53] Mathias P M, Naheiri T, Oh E M. A density correction for the Peng-Robinson equation of state. Fluid Phase Equilib, 1989, 47: 77-87 CrossRef Google Scholar

[54] Péneloux A, Rauzy E, Fréze R. A consistent correction for Redlich-Kwong-Soave volumes. Fluid Phase Equilib, 1982, 8: 7-23 CrossRef Google Scholar

[55] Ji W R, Lempe D A. Density improvement of the SRK equation of state. Fluid Phase Equilib, 1997, 130: 49-63 CrossRef Google Scholar

[56] Benedict M, Webb G B, Rubin L C. An empirical equation for thermodynamic properties of light hydrocarbons and their mixtures I. Methane, ethane, propane and n-butane. J Chem Phys, 1940, 8: 334-345 CrossRef ADS Google Scholar

[57] Benedict M, Webb G B, Rubin L C. An empirical equation for thermodynamic properties of light hydrocarbons and their mixtures II. Mixtures of methane, ethane, propane, and n-butane. J Chem Phys, 1942, 10: 747-758 CrossRef ADS Google Scholar

[58] Polishuk I. Implementation of SAFT+Cubic, PC-SAFT, and Soave-Benedict-Webb-Rubin equations of state for comprehensive description of thermodynamic properties in binary and ternary mixtures of CH4, CO2, and n-C16H34. Ind Eng Chem Res, 2011, 50: 14175-14185 CrossRef Google Scholar

[59] Starling K E. Thermo data refined for LPG. 1. Equation of state and computer prediction. Hydrocarbon Process, 1971, 50: 101–104. Google Scholar

[60] Starling K E, Han M S. Thermo data refined for LPG-14. Mixtures. Hydrocarbon Process, 1972, 51: 129–132. Google Scholar

[61] Lielmezs J. Comparison of Benedict-Webb-Rubin and starling equations of state for use in P-V-T calculations of binary mixtures. Thermochim Acta, 1989, 152: 341-358 CrossRef Google Scholar

[62] Li H, Yan J, Yan J, et al. Evaluation of existing methods for the thermodynamic properties calculation of CO2-mixtures. Technical Report. KTH, 2007. Google Scholar

[63] Soave G S. An effective modification of the Benedict-Webb-Rubin equation of state. Fluid Phase Equilib, 1999, 164: 157-172 CrossRef Google Scholar

[64] Lee B I, Kesler M G. A generalized thermodynamic correlation based on three-parameter corresponding states. AIChE J, 1975, 21: 510-527 CrossRef Google Scholar

[65] Al-Sahhaf T A, Kidnay A J, Sloan E D. Liquid + vapor equilibriums in the nitrogen + carbon dioxide + methane system. Ind Eng Chem Fund, 1983, 22: 372-380 CrossRef Google Scholar

[66] Teja A S, Rice P. A multifluid corresponding states principle for the thermodynamic properties of fluid mixtures. Chem Eng Sci, 1981, 36: 1-6 CrossRef Google Scholar

[67] Duan Z, Møller N, Weare J H. An equation of state for the CH4-CO2-H2O system: I. Pure systems from 0 to 1000°C and 0 to 8000 bar. Geochim Cosmochim Acta, 1992, 56: 2605-2617 CrossRef ADS Google Scholar

[68] Duan Z, Møller N, Weare J H. An equation of state for the CH4-CO2-H2O system: II. Mixtures from 50 to 1000°C and 0 to 1000 bar. Geochim Cosmochim Acta, 1992, 56: 2619-2631 CrossRef ADS Google Scholar

[69] Duan Z, Møller N, Weare J H. A general equation of state for supercritical fluid mixtures and molecular dynamics simulation of mixture PVTX properties. Geochim Cosmochim Acta, 1996, 60: 1209-1216 CrossRef ADS Google Scholar

[70] Chapman W G, Gubbins K E, Jackson G, et al. New reference equation of state for associating liquids. Ind Eng Chem Res, 1990, 29: 1709-1721 CrossRef Google Scholar

[71] Wertheim M S. Thermodynamic perturbation theory of polymerization. J Chem Phys, 1987, 87: 7323-7331 CrossRef ADS Google Scholar

[72] 高光华. 高等化工热力学. 北京: 清华大学出版社, 2010. 121–122. Google Scholar

[73] Huang S H, Radosz M. Equation of state for small, large, polydisperse, and associating molecules: extension to fluid mixtures. Ind Eng Chem Res, 1991, 30: 1994-2005 CrossRef Google Scholar

[74] 密建国, 陈健. 含临界点的统计缔合流体理论研究(Ⅰ)非极性流体. 化工学报, 2001, 12: 1072–1077. Google Scholar

[75] 张庆印, 密建国, 于燕梅, 等. 含临界区流体混合物的统计缔合理论研究. 计算机与应用化学, 2003, 4: 391–394. Google Scholar

[76] Diamantonis N I, Economou I G. Evaluation of statistical associating fluid theory (SAFT) and perturbed chain-SAFT equations of state for the calculation of thermodynamic derivative properties of fluids related to carbon capture and sequestration. Energy Fuels, 2011, 25: 3334-3343 CrossRef Google Scholar

[77] Diamantonis N I, Boulougouris G C, Mansoor E, et al. Evaluation of cubic, SAFT, and PC-SAFT equations of state for the vapor-liquid equilibrium modeling of CO2 mixtures with other gases. Ind Eng Chem Res, 2013, 52: 3933-3942 CrossRef Google Scholar

[78] Diamantonis N I, Boulougouris G C, Tsangaris D M, et al. Thermodynamic and transport property models for carbon capture and sequestration (CCS) processes with emphasis on CO2 transport. Chem Eng Res Des, 2013, 91: 1793-1806 CrossRef Google Scholar

[79] Perez A G, Coquelet C, Paricaud P, et al. Comparative study of vapour-liquid equilibrium and density modelling of mixtures related to carbon capture and storage with the SRK, PR, PC-SAFT and SAFT-VR Mie equations of state for industrial uses. Fluid Phase Equilib, 2017, 440: 19-35 CrossRef Google Scholar

[80] 李小森, 吴慧杰, 冯自平, 等. 利用统计缔合流体理论状态方程预测混合气体水合物的平衡形成条件. 化学学报, 2007, 65: 59–66. Google Scholar

[81] 曾志勇, 李小森. 基于PC-SAFT方程研究多孔介质中水合物相平衡的预测模型. 高等学校化学学报, 2011, 32: 908–914. Google Scholar

[82] Kunz O, Wagner W. The GERG-2008 wide-range equation of state for natural gases and other mixtures: An expansion of GERG-2004. J Chem Eng Data, 2012, 57: 3032-3091 CrossRef Google Scholar

[83] Kunz O, Klimeck R, Wagner W, et al. The GERG-2004 wide-range equation of state for natural gases and other mixtures. Technical Report. GERG Technical Monograph 15, 2007. Google Scholar

[84] Estela-Uribe J F. Application to mixtures of non-polar fluids of a three-parameter three-fluid corresponding states model based on reference equations of state. Fluid Phase Equilib, 2012, 313: 73-90 CrossRef Google Scholar

[85] Estela-Uribe J F. An improved Helmholtz energy model for non-polar fluids and their mixtures. Part 2: Application to mixtures of non-polar fluids. Fluid Phase Equilib, 2013, 354: 326-343 CrossRef Google Scholar

[86] Frey K, Modell M, Tester J W. Density-and-temperature-dependent volume translation for the SRK EOS: 2. Mixtures. Fluid Phase Equilib, 2013, 343: 13-23 CrossRef Google Scholar

  • 图 1

    (网络版彩图)基于压缩因子测量方法的CO2-CH4体系PVTx实验研究的温度、压力范围

  • 图 2

    (网络版彩图)基于密度/体积测量方法的CO2-CH4体系PVTx实验研究的温度、压力范围

  • 图 3

    (网络版彩图) CO2-CH4体系气液相平衡预测. (a) Duan和Hu[48]的方程; (b) Li和Yan[50]的不同方程

  • 图 4

    (网络版彩图) Polishuk[63]中不同状态方程热力学性质预测. (a) 气液相平衡; (b) 密度

  • 图 5

    (网络版彩图) CO2密度预测偏差分布图[76]. (a) SAFT方程; (b) PC-SAFT方程

  • 表 1   基于测量压缩因子的CO-CH体系热力学性质实验研究

    测量方法

    CO2摩尔分数x

    温度T (K)

    压力P (MPa)

    数据点

    数据来源

    时间

    恒容法

    0.15, 0.39, 0.59, 0.80

    311~511

    1.4~68.9

    560

    Reamer等人[11]

    1944

    恒容法

    0.20, 0.40, 0.60, 0.80

    293~453

    4.1~19.3

    28

    Beer[12]

    1969

    恒容法

    0.4574, 0.5104

    381~452

    7.1~12.9

    24

    童景山和刘裕品[13]

    1984

    恒容法

    0.98

    225~400

    2.1~35.8

    91

    Magee和Ely[14]

    1988

    PVT测量法

    0.8994a)

    282~322

    9.4~48.9

    65

    Simon等人[15]

    1977

    PVT测量法

    0.001

    323.15

    8.1~12.6

    11

    McElroy等人[16]

    1989

    Burnett方法

    0.10, 0.30, 0.68, 0.90

    300~320

    0.2~9.8

    155

    Brugge等人[17]

    1989

    Burnett方法

    0.47608

    205~320

    0.1~48.4

    119

    Esper等人[18]

    1989

    Burnett方法

    0.4820

    323~423

    6.5

    56

    Mallu和Viswanath[19]

    1990

    CH4的摩尔分数为0.0944, 剩余组分为N2和C2~C6.

  • 表 2   基于密度/体积性质测量方法的CO-CH体系热力学性质实验研究

    测量方法

    CO2摩尔分数x

    温度T (K)

    压力p (MPa)

    数据点

    数据来源

    时间

    振动管密度计

    0.10~0.90

    473.15

    100.0

    9

    Seitz等人[22]

    1994

    振动管密度计

    0.10~0.90

    673.15

    19.9~99.9

    44

    Seitz和Blencoe[23]

    1996

    振动管密度计

    0.10~0.90

    323~573

    9.9~99.9

    194

    Seitz等人[24]

    1996

    振动管密度计

    0.8525~0.9961

    253~333

    0.1~20.0

    49000

    Blanco等人[25]

    2012

    振动管密度计

    0.97~0.996

    304

    0.1~20.0

    5000

    Rivas等人[26]

    2013

    磁悬浮天平

    0.20, 0.40, 0.60

    250~400

    1.0~20.0

    248

    Mondéjar等人[27]

    2012

    磁悬浮天平

    0.95

    300~313

    2.0~12.0

    181

    Yang等人[28]

    2015

    磁悬浮天平

    0.10~0.90

    300~308

    2.0~18.0

    271

    Liu等人[29]

    2017

    磁悬浮天平

    0.10~0.90

    313~353

    3.0~18.0

    169

    Liu等人[30]

    2018

    毛细管法

    0.45~0.96

    253~288

    2.4~14.5

    179

    Arai等人[31]

    1971

    比重瓶

    0.10, 0.29, 0.30, 0.67, 0.90

    225~350

    1.8~69.5

    228

    Hwang等人[32]

    1997

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号