SCIENTIA SINICA Technologica, Volume 49 , Issue 2 : 166-174(2019) https://doi.org/10.1360/N092018-00392

The key technologies for radial rib deployable antenna of Chang’e-4 relay satellite

More info
  • ReceivedNov 19, 2018
  • AcceptedJan 17, 2019
  • PublishedFeb 14, 2019


The radial rib deployable antenna is critical for Chang’e-4 relay satellite. The antenna can be stowed for launch and precisely deploy on the orbit. The deployment of the mechanism, the on-orbit stability of surface accuracy and the validation under the extreme low temperature are the keys for the success of relay satellite. The distributed spring-driven mechanism for the antenna is firstly proposed in this paper. The spring is released slowly in the deployment. The mechanism is verified in the high and low temperature. Secondly, the material and structure of the antenna are optimised for the high stability of surface accuracy. The surface accuracy of the antenna is analysed under extreme conditions. The maximum thermal distortion is far superior to the requirement. The extremely low-temperature experiments are finally designed for validating the capability of antenna based on the simulation of on-orbit environment. The results show the performance of the antenna is unvarying under the extreme low temperature. The radial rib deployable antenna can satisfy all the requirements on orbit and guarantee the success of the relay mission of Chang’e-4 satellite.


[1] Burns J O, Kring D A, Hopkins J B, et al. A lunar L2-Farside exploration and science mission concept with the Orion Multi-Purpose Crew Vehicle and a teleoperated lander/rover. Adv Space Res, 2012, 52: 306-320 CrossRef ADS arXiv Google Scholar

[2] Wang Q, Liu J. A Chang’E-4 mission concept and Vision of future chinese lunar exploration activities. Acta Astronaut, 2016, 127: 678-683 CrossRef ADS Google Scholar

[3] Mimoun D, Wieczorek M A, Alkalai L, et al. Farside explorer: Unique science from a mission to the farside of the moon. Exp Astron, 2012, 33: 529-585 CrossRef ADS Google Scholar

[4] 吴伟仁, 王琼, 唐玉华, 等. “嫦娥4号”月球背面软着陆任务设计. 深空探测学报, 2017, 4: 111−117. Google Scholar

[5] 张华振, 马小飞, 宋燕平, 等. 星载高精度环形网状天线设计方法. 中国空间科学技术, 2013, 10: 1−6. Google Scholar

[6] 李团结, 马小飞. 大型空间可展开天线技术研究. 空间电子技术, 2012, 3: 35−39. Google Scholar

[7] 张惠峰, 关富玲. 可展桁架天线热-结构耦合分析. 浙江大学学报(工学版), 2010, 12: 2320−2325. Google Scholar

[8] 朱敏波, 曹峰云, 刘明治. 星载大型可展开天线太空辐射热变形计算. 西安电子科技大学学报(自然科学版), 2004, 31: 27−31. Google Scholar

[9] 王朋朋, 薛永刚, 高博. 伞状天线张力绳索热变形敏感性分析. 空间电子技术, 2014, 3: 20−24. Google Scholar

[10] 徐海强, 朱敏波, 杨艳妮. 星载天线的热分析技术方法研究. 强度与环境, 2007, 34: 39−44. Google Scholar

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号