logo

SCIENTIA SINICA Technologica, Volume 49 , Issue 2 : 147-155(2019) https://doi.org/10.1360/N092018-00396

Design and verification of relay communication system for lunar farside exploration

More info
  • ReceivedNov 21, 2018
  • AcceptedJan 17, 2019
  • PublishedFeb 14, 2019

Abstract

The Chang’e-4 probes include lander, rover and relay satellite. The relay satellite is launched before the lander and the rover, both of which will implement lunar surface exploration on the farside of moon. As one of the key components, relay communication system is responsible for establishing the communication link between ground stations and lunar surface probes. Based on the characteristics of Chang’e-4, the paper analyzes the requirement of relay communication system, and proposes the optimal scheme. The scheme takes the mission requirements into account, and inherits design of Chang’e-3 telecommunication system as far as possible, and carries out the system optimization design, which reduces the cost of lunar surface probes, then designs the working mode of relay communication system for critical stages, including powered descent, separation of the lander and the rover, sleep and reboot, and so on. At last, the paper introduces verification of relay communication system.


References

[1] 吴伟仁, 王琼, 唐玉华, 等. “嫦娥4号”月球背面软着陆任务设计. 深空探测学报, 2017, 4: 112–117. Google Scholar

[2] Farquhar R W. The control and use of libration point satellites. Stanford Univ Report SUDAAR-350, 1968. Google Scholar

[3] SCAWG, NASA. NASA space communication and navigation architecture recommendations for 2005–2030. Cleveland: NASA’s Glenn Center, 2006. Google Scholar

[4] Lee S U, Kim J H, Lee S P. Communications satellite system by using moon orbit satellite constellation. J Astron Space Sci, 2003, 20: 313-318 CrossRef ADS Google Scholar

[5] Bhasin K, Hayden J L. Developing architectures and technologies for an evolvable NASA space communication infrastructure. NASA/TM-2004-213108. Cleveland: NASA’s Glenn Center, 2004. Google Scholar

[6] Grebenkemper C J. 本振相位噪声及其对接收机性能的影响. 和新阳, 译. 空间电子技术, 2003, 1: 4–13. Google Scholar

[7] Consultative Committee for Space Data Standards (CCSDS). TM synchronization and channel coding: Summary of concept and rationale. NASA CCSDS 130.1-G-2, 2012. Google Scholar

  • 图 1

    (网络版彩图)嫦娥四号地月中继链路系统空间位置示意图[1]

  • 图 2

    (网络版彩图)嫦娥四号任务中继链路

  • 图 3

    中继星中继设备框图

  • 图 4

    (网络版彩图)返向链路编码增益[7]

  • 图 5

    (网络版彩图)动力下降过程示意图

  • 图 6

    (网络版彩图)中继链路在轨测试系统示意图

  • 表 1   中继链路系统链路余量

    链路

    调制体制

    链路余量

    中继星对地测控链路

    统一载波调制体制.

    遥控: 码速率1000 bps;

    遥测: 码速率2048 bps (编码后);

    测距: 侧音测距, 主音频率为100 kHz;

    干涉测量: 1组DOR音, 与下行载波相干

    均不低于3 dB

    中继星对地数传链路

    抑制载波调制体制.

    码速率: 1 Mbps (编码后)

    不低于3 dB

    中继前向链路

    统一载波调制体制.

    遥控: 码速率125 bps

    不低于3 dB

    中继返向链路

    抑制载波调制体制.

    最高码速率: 555.556 kbps (编码后)

    不低于3 dB

  • 表 2   载波相位噪声要求

    序号

    偏离载频

    相位噪声

    1

    10 Hz

    −40 dBc/Hz

    2

    100 Hz

    −55 dBc/Hz

    3

    1 kHz

    −70 dBc/Hz

    4

    10 kHz

    −77 dBc/Hz

    5

    100 kHz

    −82 dBc/Hz

    6

    1 MHz

    −100 dBc/Hz

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号