logo

SCIENTIA SINICA Informationis, Volume 46 , Issue 2 : 193-211(2016) https://doi.org/10.1360/N112014-00301-197

Multi-stage dual neighborhood artificial bee colony algorithm for satellite module layout optimization problem

More info
  • AcceptedJun 23, 2015
  • PublishedJan 28, 2016

Abstract

This paper presents an improved artificial bee colony algorithm with dual neighborhood, and combines it with a multi-stage solving strategy to form a multi-stage dual neighborhood artificial bee colony algorithm (MS-DABC) for the three-dimensional satellite module layout optimization problem (3DSMLOP). 3DSMLOP is a complex multi-constrained coupling problem whose solution space is non-continuous, non-linear, multi-modal. MS-DABC decomposes 3DSMLOP into several subsystems, and divides the optimization process into two stages according to the coupling relationship on optimization goals between subsystems. In the first stage, each subsystem uses the dual neighborhood artificial bee colony algorithm (DABC) to optimize no-coupling optimization goals independently. Based on the optimal solution obtained in the first stage, the coupling optimization goals are solved by the collaborative rotation between the subsystems in the second stage. The rotation angles are optimized by the artificial bee colony algorithm. Numerical experiment results show that MS-DABC is very effective and has outstanding performance for solving the 3DSMLOP example.


References

[1] Teng H F, Sun S L, Ge W H, et al. Layout optimization for dishes installed on a rotating circular table-the packing problem with equilibrium behavioral constraints. Sci Sin Math, 1994, 24: 754-760 [滕弘飞, 孙守林, 葛文海, 等. 转 动圆桌平衡摆盘——带平衡性能约束的Packing 问题. 中国科学: 数学, 1994, 24: 754-760]. Google Scholar

[2] Xiao R B, Xu Y C, Amos M. Two hybrid compaction algorithms for the layout optimization problem. BioSystems,2007, 90: 560-567. Google Scholar

[3] Wang Y S, Shi Y J, Teng H F. An improved scatter search for circles packing problem with the equilibrium constraint. Chin J Comput, 2009, 32: 1214-1221 [王奕首, 史彦军, 滕弘飞. 用改进的散射搜索法求解带平衡约束的圆形Packing 问题. 计算机学报, 2009, 32: 1214-1221]. Google Scholar

[4] Liu J F, Li G. Basin filling algorithm for the circular packing problem with equilibrium behavioral constraints. Sci Sin Inform, 2010, 53: 885-895 [刘景发, 李刚. 求解带平衡性能约束的圆形装填问题的吸引盘填充算法. 中国科学: 信 息科学, 2010, 40: 423-432]. Google Scholar

[5] Li G, Liu J F. Heuristic algorithm based on tabu search for the circular packing problem with equilibrium constraints. Sci Sin Inform, 2011, 41: 1076-1088 [李刚, 刘景发. 基于禁忌搜索的启发式算法求解带平衡约束的圆形装填问题. 中国科学: 信息科学, 2011, 41: 1076-1088]. Google Scholar

[6] Li Z Q, Tian Z J, Wang Y S, et al. A fast heuristic parallel ant colony algorithm for circles packing problem with the equilibrium constraints. J Comput Res Dev, 2012, 49: 1899-1909 [黎自强, 田茁君, 王奕首, 等. 求解平衡约束圆形 packing 问题的快速启发式并行蚁群算法. 计算机研究与发展, 2012, 49: 1899-1909]. Google Scholar

[7] Huang Z D, Xiao R B. An emergent computation approach to the problem of polygon layout with performance constraints. Phys A, 2013, 392: 5074-5088. Google Scholar

[8] He K, Mo D Z, Xu R C, et al. A quasi-physical algorithm based on coarse and fine adjustment for solving circles packing problem with constraints of equilibrium. Chin J Comput, 2013, 36: 1224-1234 [何琨, 莫旦增, 许如初, 等. 基 于粗精调技术的求解带平衡约束圆形packing 问题的拟物算法. 计算机学报, 2013, 36: 1224-1234]. Google Scholar

[9] Huang W Q, He K. Apure quasi-human algorithm for solving cuboid packing problem. Sci China Ser F-Inf Sci, 2009,39: 617-622 [黄文奇, 何琨. 求解长方体packing 问题的纯粹拟人算法. 中国科学F 辑: 信息科学, 2009, 39: 617-622]. Google Scholar

[10] Zhang D F, Peng Y, Zhu W X, et al. A hybrid simulated annealing algorithm for the three-dimensional packing problem. Chin J Comput, 2009, 32: 2147-2156 [张德富, 彭煜, 朱文兴, 等. 求解三维装箱问题的混合模拟退火算法. 计算机学报, 2009, 32: 2147-2156]. Google Scholar

[11] Li W, Huang W Q, Jiang D C, et al. A heuristic algorithm for cube packing with time schedule. Sci Sin Inform, 2010,53: 18-29 [李未, 黄文奇, 蒋东辰, 等. 一种求解带有时间调度的四维长方体装填问题的启发式算法. 中国科学: 信 息科学, 2010, 40: 1-12]. Google Scholar

[12] Szykman S, Cagan J. Constrained three-dimensional component layout using simulated annealing. J Mech Design,1997, 119: 28-35. Google Scholar

[13] Braun R D, Moore A A, Kroo I M. Collaborative approach to launch vehicle design. J Spacecraft Rockets, 1997, 34:478-486. Google Scholar

[14] Grignon P M, Fadel G M. A GA based configuration design optimization method. J Mech Design, 2004, 126: 6-14. Google Scholar

[15] de Sousa F L, Muraoka I, Galski R L. On the optimal positioning of electronic equipment in space platforms. In: Proceedings of the 19th International Congress of Mechanical Engineering, Brasilia, 2007. 5-9. Google Scholar

[16] Sun Z G, Teng H F. Optimal layout design of a satellite module. Eng Optimiz, 2003, 35: 513-529. Google Scholar

[17] Zhang B, Teng H F, Shi Y J. Layout optimization of satellite module using soft computing techniques. Appl Soft Comput, 2008, 8: 507-521. Google Scholar

[18] Wang Y S, Teng H F, Shi Y J. Cooperative coevolutionary scatter search for satellite module layout design. Eng Computations, 2009, 26: 761-785. Google Scholar

[19] Teng H, Chen Y, Zeng W, et al. A dual-system variable-grain cooperative coevolutionary algorithm: satellite-module layout design. IEEE T Evolut Comput, 2010, 14: 438-455. Google Scholar

[20] Karaboga D. An Idea Based on Honey Bee Swarm for Numerical Optimization. Kayseri: Erciyes University. Technical Report TR06. 2005. Google Scholar

[21] Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global optim, 2007, 39: 459-471. Google Scholar

[22] Li J Q, Pan Q K, Gao K Z. Pareto-based discrete artificial bee colony algorithm for multi-objective flexible job shop scheduling problems. Int J Adv Manuf Tech, 2011, 55: 1159-1169. Google Scholar

[23] Karaboga D, Akay B. A comparative study of artificial bee colony algorithm. Appl Math Comput, 2009, 214: 108-132. Google Scholar

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号