References
[1]
Barabási
A L,
Albert
R.
Statistical mechanics of complex networks.
Rev Mod Phys,
2002, 74: 47-97
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Statistical mechanics of complex networks&author=Barabási A L&author=Albert R&publication_year=2002&journal=Rev Mod Phys&volume=74&pages=47-97
[2]
Ewards D M. Introduction to Graphical Modelling. New York: Springer, 2000.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ewards D M. Introduction to Graphical Modelling. New York: Springer, 2000&
[3]
Dempster A P. Covariance selection. Biometrika, 1972, 32: 95-108.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dempster A P. Covariance selection. Biometrika, 1972, 32: 95-108&
[4]
Tibshirani R. Regression shrinkage and selection via the lasso. J Royal Stat Soc B, 1996, 58: 267-288.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tibshirani R. Regression shrinkage and selection via the lasso. J Royal Stat Soc B, 1996, 58: 267-288&
[5]
Meinshausen
N,
Bühlmann
P.
High-dimensional graphs with the lasso.
Ann Statist,
2006, 34: 1436-1462
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-dimensional graphs with the lasso&author=Meinshausen N&author=Bühlmann P&publication_year=2006&journal=Ann Statist&volume=34&pages=1436-1462
[6]
Yuan
M,
Lin
Y.
Model selection and estimation in the Gaussian graphical model.
Biometrika,
2007, 94: 19-35
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Model selection and estimation in the Gaussian graphical model&author=Yuan M&author=Lin Y&publication_year=2007&journal=Biometrika&volume=94&pages=19-35
[7]
Friedman
J,
Hastie
T,
Tibshirani
R.
Sparse inverse covariance estimation with the graphical lasso.
Biostat,
2008, 9: 432-441
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sparse inverse covariance estimation with the graphical lasso&author=Friedman J&author=Hastie T&author=Tibshirani R&publication_year=2008&journal=Biostat&volume=9&pages=432-441
[8]
Ravikumar
P,
Raskutti
G,
Wainwright
M J, et al.
High-dimensional covariance estimation by minimizing $L_1$-penalized log-determinant.
Electron J Stat,
2011, 5: 935-980
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-dimensional covariance estimation by minimizing $L_1$-penalized log-determinant&author=Ravikumar P&author=Raskutti G&author=Wainwright M J&publication_year=2011&journal=Electron J Stat&volume=5&pages=935-980
[9]
Peng
J,
Wang
P,
Zhou
N, et al.
Partial correlation estimation by joint sparse regression models.
J Am Statist Assoc,
2009, 104: 735-746
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Partial correlation estimation by joint sparse regression models&author=Peng J&author=Wang P&author=Zhou N&publication_year=2009&journal=J Am Statist Assoc&volume=104&pages=735-746
[10]
Hero
A,
Rajaratnam
B.
Hub discovery in partial correlation graphs.
IEEE Trans Inf Theory,
2012, 58: 6064-6078
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hub discovery in partial correlation graphs&author=Hero A&author=Rajaratnam B&publication_year=2012&journal=IEEE Trans Inf Theory&volume=58&pages=6064-6078
[11]
Tan K M, London P, Mohan K, et al. Learning graphical models with hubs. J Mach Learn Res, 2014, 15: 3297-3331.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tan K M, London P, Mohan K, et al. Learning graphical models with hubs. J Mach Learn Res, 2014, 15: 3297-3331&
[12]
Liu Q, Ihler A T. Learning scale free networks by reweighed $L_1$ regularization. In: Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, 2011. 15: 40-48.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Liu Q, Ihler A T. Learning scale free networks by reweighed $L_1$ regularization. In: Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, 2011. 15: 40-48&
[13]
Knight
K,
Fu
W J.
Asymptotics for lasso-type estimators.
Ann Statist,
2000, 28: 1356-1378
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Asymptotics for lasso-type estimators&author=Knight K&author=Fu W J&publication_year=2000&journal=Ann Statist&volume=28&pages=1356-1378
[14]
Fan
J Q,
Li
R Z.
Variable selection via nonconcave penalized likelihood and its oracle properties.
J Am Statist Assoc,
2001, 96: 1348-1360
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Variable selection via nonconcave penalized likelihood and its oracle properties&author=Fan J Q&author=Li R Z&publication_year=2001&journal=J Am Statist Assoc&volume=96&pages=1348-1360
[15]
Huang
J,
Horowitz
J L,
Ma
S.
Asymptotic properties of bridge estimators in sparse high-dimensional regression models.
Ann Statist,
2008, 36: 587-613
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Asymptotic properties of bridge estimators in sparse high-dimensional regression models&author=Huang J&author=Horowitz J L&author=Ma S&publication_year=2008&journal=Ann Statist&volume=36&pages=587-613
[16]
Zhang H, Wang Y, Chang X Y, et al. $L_{1/2}$ regularization. Sci Sin Inform, 2010, 40: 412-422 [张海, 王尧, 常象宇, 等. $L_{1/2}$正则化. 中国科学: 信息科学, 2010, 40: 412-422].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhang H, Wang Y, Chang X Y, et al. $L_{1/2}$ regularization. Sci Sin Inform, 2010, 40: 412-422 [张海, 王尧, 常象宇, 等. $L_{1/2}$正则化. 中国科学: 信息科学, 2010, 40: 412-422]&
[17]
Lange K, Hunter D, Yang I. Optimization transfer using surrogate objective functions (with discussion). J Comput Graph Statist, 2000, 9: 1-59.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lange K, Hunter D, Yang I. Optimization transfer using surrogate objective functions (with discussion). J Comput Graph Statist, 2000, 9: 1-59&
[18]
Witten
D,
Friedman
J H,
Simon
N.
New insights and faster computations for the graphical lasso.
J Comput Graph Statist,
2011, 20: 892-900
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=New insights and faster computations for the graphical lasso&author=Witten D&author=Friedman J H&author=Simon N&publication_year=2011&journal=J Comput Graph Statist&volume=20&pages=892-900
[19]
van der Vaart A W. Asymptotic Statistics. New York: Cambridge University Press, 1998. 61-67.
Google Scholar
http://scholar.google.com/scholar_lookup?title=van der Vaart A W. Asymptotic Statistics. New York: Cambridge University Press, 1998. 61-67&
[20]
Geyer
C.
On the asymptotics of constrainted M-estimation.
Ann Statist,
1994, 22: 1993-2010
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=On the asymptotics of constrainted M-estimation&author=Geyer C&publication_year=1994&journal=Ann Statist&volume=22&pages=1993-2010
[21]
Zou
H,
Li
R Z.
One-step sparse estimates in nonconcave penalized likelihood models.
Ann Statist,
2008, 36: 1509-1533
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=One-step sparse estimates in nonconcave penalized likelihood models&author=Zou H&author=Li R Z&publication_year=2008&journal=Ann Statist&volume=36&pages=1509-1533
[22]
Barabási
A L,
Albert
R.
Emergence of scaling in random networks.
Science,
1999, 286: 509-512
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Emergence of scaling in random networks&author=Barabási A L&author=Albert R&publication_year=1999&journal=Science&volume=286&pages=509-512
[23]
Spellman
P T,
Sherlock
G,
Zhang
M Q, et al.
Comprehensive identification of cell cycleregulated genes of the yeast saccharomyces cerevisiae by microarray hybridization.
Mol Biol Cell,
1998, 9: 3273-3297
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Comprehensive identification of cell cycleregulated genes of the yeast saccharomyces cerevisiae by microarray hybridization&author=Spellman P T&author=Sherlock G&author=Zhang M Q&publication_year=1998&journal=Mol Biol Cell&volume=9&pages=3273-3297
[24]
Chen
G,
Larsen
P,
Almasri
E, et al.
Rank-based edge reconstruction for scale-free genetic regulatory networks.
BMC Bioinformatics,
2008, 9: 75-3297
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Rank-based edge reconstruction for scale-free genetic regulatory networks&author=Chen G&author=Larsen P&author=Almasri E&publication_year=2008&journal=BMC Bioinformatics&volume=9&pages=75-3297
[25]
Ravikumar
P,
Wainwright
M J,
Lafferty
J D.
High-dimensional Ising model selection using $l_1$-regularized logistic regression.
Ann Statist,
2010, 38: 1287-1319
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-dimensional Ising model selection using $l_1$-regularized logistic regression&author=Ravikumar P&author=Wainwright M J&author=Lafferty J D&publication_year=2010&journal=Ann Statist&volume=38&pages=1287-1319
[26]
Chen
S,
Witten
D,
Shojaie
A.
Selection and estimation for mixed graphical models.
Biometrika,
2015, 102: 47-64
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Selection and estimation for mixed graphical models&author=Chen S&author=Witten D&author=Shojaie A&publication_year=2015&journal=Biometrika&volume=102&pages=47-64
[27]
Zhang L J, Zhang H. Joint estimation of multiple graphical models via bridge. Appl Math: J Chinese Univ (Ser A), 2014, 92: 127-137 [张凌洁, 张海. 多图模型的联合估计的群桥方法. 高校应用数学学报, 2014, 92: 127-137].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhang L J, Zhang H. Joint estimation of multiple graphical models via bridge. Appl Math: J Chinese Univ (Ser A), 2014, 92: 127-137 [张凌洁, 张海. 多图模型的联合估计的群桥方法. 高校应用数学学报, 2014, 92: 127-137]&