SCIENTIA SINICA Informationis, Volume 46 , Issue 11 : 1662-1675(2016) https://doi.org/10.1360/N112016-00082

A TDC-based method for nano-scale displacement measurement and its error analysis

More info
  • ReceivedApr 7, 2016
  • AcceptedJul 1, 2016
  • PublishedNov 4, 2016


The innovation and improvement of nano-scale measurement methods and devices are driving the rapid development of nano-technology. One of the most important foundations of micro-manipulation is the accurate measurement of micro-and nano-displacement. This paper focuses on the measurement of end effectors for a nano-manipulation robot, which operates in the vacuum chamber of a scanning electron microscope. A standard capacitor is charged and discharged through a strain gauge, and the time is measured by a time-digital convertor to calculate the displacement. The error and power consumption are analyzed and compared with a traditional Wheatstone bridge. The power consumption is greatly reduced by optimizing the error; thus, it takes advantage of the vacuum environment, in which heat dissipation is difficult to achieve. The drift, precision, resolution, and linearity are tested, and demos of closed-loop control and repeated micro-unit probing are provided to verify the validity of this method.

Funded by






[1] FukudaT , Nakajima M, Liu P, et al. Bringing the nanolaboratory inside electron microscopes. IEEE Nanotech Mag, 2008, 2: 18-31 CrossRef Google Scholar

[2] YuM-F , Lourie O, Lourie O, et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 2000, 287: 637-640 CrossRef Google Scholar

[3] DongL , Arai F, Fukuda T. Destructive constructions of nanostructures with carbon nanotubes through nanorobotic manipulation. IEEE/ASME Trans Mechatronics, 2004, 9: 350-357 CrossRef Google Scholar

[4] HeeresE C, Katan A J, van Es M H, et al. A compact multipurpose nanomanipulator for use inside a scanning electron microscope. Rev Sci Instrum, 2010, 81: 023704-357 CrossRef Google Scholar

[5] FatikowS , Wich T, Hulsen H, et al. Microrobot system for automatic nanohandling inside a scanning electron microscope. IEEE/ASME Trans Mechatronics, 2007, 12: 244-252 CrossRef Google Scholar

[6] ZhangD , Breguet J-M, Clavel R, et al. In situ electron microscopy mechanical testing of silicon nanowires using electrostatically actuated tensile stages. J Microelectromech Syst, 2010, 19: 663-674 CrossRef Google Scholar

[7] ChenB , Anchel D, Gong Z, et al. Identification of genes from nano-dissected sub-nuclear structures. Small, 2014, 10: 3267-3274 CrossRef Google Scholar

[8] FukudaT, Arai F, Nakajima M. Nanomanipulation system under electron microscope. In: Micro-Nanorobotic Manipulation Systems and Their Applications. Berlin: Springer, 2013. 163-196. Google Scholar

[9] DongL X, Shou K Y, Frutiger D R, et al. Engineering multi-walled carbon nanotubes inside a transmission electron microscope using nanorobotic manipulation. IEEE Trans Nanotech, 2008, 7: 508-517 CrossRef Google Scholar

[10] FukudaT, Arai F, Dong L. Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations. Proc IEEE, 2003, 91: 1803-1818. Google Scholar

[11] Bell D J, Dong L, Nelson B J, et al. Fabrication and characterization of three-dimensional IngaAs/GaAs nanosprings. Nano Lett, 2006, 6: 725-729 CrossRef Google Scholar

[12] Zhu Y, Xu F, Qin Q, et al. Mechanical properties of vapor-liquid-solid synthesized silicon nanowires. Nano Lett, 2009, 9: 3934-3939 CrossRef Google Scholar

[13] Espinosa H D, Zhu Y, Moldovan N. Design and operation of a MEMS-based material testing system for nanomechanical characterization. J Microelectromech Syst, 2007, 16: 1219-1231 CrossRef Google Scholar

[14] Hwang G, Hashimoto H, Bell D J, et al. Piezoresistive InGaAs/GaAs nanosprings with metal connectors. Nano Lett, 2009, 9: 554-561 CrossRef Google Scholar

[15] Lugstein A, Steinmair M, Steiger A, et al. Anomalous piezoresistance effect in ultrastrained silicon nanowires. Nano Lett, 2010, 10: 3204-3208 CrossRef Google Scholar

[16] Dai H, Hafner J, Rinzler A, et al. Nanotubes as nanoprobes in scanning probe microscopy. Nature, 1996, 384: 147-150 CrossRef Google Scholar

[17] Li J, Zhang Y, To S, et al. Effect of nanowire number, diameter, and doping density on nano-fet biosensor sensitivity. ACS Nano, 2011, 5: 6661-6668 CrossRef Google Scholar

[18] Aoki K, Miyazaki H, Hirayama H, et al. Microassembly of semiconductor threedimensional photonic crystals. Nat Mater, 2003, 2: 117-121 CrossRef Google Scholar

[19] Chen H, He C, Wang C, et al. Far-field optical imaging of a linear array of coupled gold nanocubes: direct visualization of dark plasmon propagating modes. ACS Nano, 2011, 5: 8223-8229 CrossRef Google Scholar

[20] Ahmad M, Nakajima M, Kojima M, et al. Nanofork for single cells adhesion measurement via ESEMnanomanipulator system. IEEE Trans Nano Biosci, 2012, 11: 70-78 CrossRef Google Scholar

[21] Chen L G, Sun L N, Bian X Q, et al. Research of MENS assembly system based on micro-vision. Machinery Electron, 2005, 2005: 31-33 [陈立国, 孙立宁, 边信黔, 等. 基于显微视觉的MEMS微装配系统研究. 机械与电子, 2005, 2005: 31-33]. Google Scholar

[22] Zong G H, Sun M L, Bi S S, et al.A microassembly workcell with macro to micro automatic operations. China Mech Eng, 2005, 16: 2125-2130 [宗光华, 孙明磊, 毕树生, 等. 宏-微操作结合的自动微装配系统. 中国机械工程, 2005, 16: 2125-2130]. Google Scholar

[23] Li D J, Rong W B, Sun L N, et al. SEM-based tele-nanomanipulation system with virtual 3D visual and force interaction. Robot, 2013, 35: 52-59 [李东洁, 荣伟彬, 孙立宁, 等. 基于虚拟3D视觉和力觉交互的SEM 遥纳操作系统. 机器人, 2013, 35: 52-59. Google Scholar

[24] Chen Q, Wang S, Peng L M. Establishing Ohmic contacts for in situ current-voltage characteristic measurements on a carbon nanotube inside the scanning electron microscope. Nanotechnology, 2006, 17: 1087-78 CrossRef Google Scholar

[25] Wei X L, Chen Q, Liu Y, et al. Cutting and sharpening carbon nanotubes using a carbon nanotube nanoknife. Nanotechnology, 2007, 18: 185503-78 CrossRef Google Scholar

[26] Ji Y, Wang L, Wei B, et al. In-situ micromanipulation and dynamic observation of nano-sized materials by using a scanning electron microscope. J Beijing Univ Tech, 2008, 34: 429-433 [吉元, 王丽, 卫斌, 等. 扫描电镜中纳米材料的原位操纵和动态观察. 北京工业大学学报, 2008, 34: 429-433]. Google Scholar

[27] Yan Y J, Zhang Y S, Peng K Q, et al. Design of nano-manipulator in a scanning electron microscope. J Chinese Electron Microscopy Soc, 2004, 23: 484-484 [闫允杰, 张友生, 彭奎庆, 等. 一种扫描电镜下纳米操作台的设计. 电子显微学报, 2004, 23: 484-484]. Google Scholar

[28] Andrew J. Fleming, a review of nanometer resolution position sensors: operation and performance. Sens Actuat A: Phys, 2013, 190: 106-126 CrossRef Google Scholar

[29] Chen B, Anchel D, Gong Z, et al. Identification of genes from nano-dissected sub-nuclear structures. Small, 2014, 10: 3267-3274 CrossRef Google Scholar

[30] Zhang Y L, Zhang Y, Ru C, et al. A load-lockcompatible nanomanipulation system for scanning electron microscope. IEEE/ASME Trans Mechatron, 2013, 18: 230-237 CrossRef Google Scholar

[31] Cui Y G, Zheng J H, Ma J Q, et al. Self-sensing piezoelectric micro-gripper. Opt Precis Eng, 2015, 23: 1996-2004 [崔玉国, 郑军辉, 马剑强, 等. 压电自感知微夹钳. 2015, 23: 1996-2004]. Google Scholar

[32] Xi X, Clancy T, Wu X Z, et al. A MEMS XY-stage with sub-nanometer positioning. In: Proceedings of IEEE International Conference on Mechatronics and Automation (ICMA), Beijing, 2015. 988-993. Google Scholar

[33] Karrai K, Braun P. Miniature long-range laser displacement sensor. Proc Actuator, 2010, 1: 285-288. Google Scholar

[34] Bhagat U, Shirinzadeh B, Tian Y, et al. Experimental analysis of laser interferometry-based robust motion tracking control of a flexure-based mechanism umesh. IEEE Trans Autom Sci Eng, 2013, 10: 267-275 CrossRef Google Scholar

[35] Gong Z, Chen B K, Liu J, et al. Fluorescence and SEM correlative microscopy for nanomanipulation of sub-cellular structures. Light Sci Appl, 2014, 3: e224-275 CrossRef Google Scholar