References
[1]
Kompella V P, Pasquale J C, Polyzos G C. Multicast routing for multimedia communication. IEEE/ACM Trans Netw, 2015, 1: 286-292.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kompella V P, Pasquale J C, Polyzos G C. Multicast routing for multimedia communication. IEEE/ACM Trans Netw, 2015, 1: 286-292&
[2]
Akyildiz I F, Melodia T, Chowdury K R. Wireless multimedia sensor networks: a survey. IEEE Wirel Commun, 2008, 14: 32-39.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Akyildiz I F, Melodia T, Chowdury K R. Wireless multimedia sensor networks: a survey. IEEE Wirel Commun, 2008, 14: 32-39&
[3]
Fargues
J,
Landau
M C,
Dugourd
A, et al.
Conceptual graphs for semantics and knowledge processing.
IBM J Res Dev,
1986, 30: 70-79
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Conceptual graphs for semantics and knowledge processing&author=Fargues J&author=Landau M C&author=Dugourd A&publication_year=1986&journal=IBM J Res Dev&volume=30&pages=70-79
[4]
Duda
R O,
Shortliffe
E H.
Expert systems research.
Science,
1983, 220: 261-268
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Expert systems research&author=Duda R O&author=Shortliffe E H&publication_year=1983&journal=Science&volume=220&pages=261-268
[5]
Liao
S H.
Expert system methodologies and applications--a decade review from 1995 to 2004.
Expert Syst Appl,
2005, 28: 93-103
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Expert system methodologies and applications--a decade review from 1995 to 2004&author=Liao S H&publication_year=2005&journal=Expert Syst Appl&volume=28&pages=93-103
[6]
Lennartson B, Sundberg K. Expert system. US Patent No. 8,064,901, 2011.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lennartson B, Sundberg K. Expert system. US Patent No. 8,064,901, 2011&
[7]
Zheng N N. Information processing for cognition process and new artificial intelligent systems. China Basic Sci, 2000, 8: 9-18 [郑南宁. 认知过程的信息处理和新型人工智能系统. 中国基础科学, 2000, 8: 9-18].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zheng N N. Information processing for cognition process and new artificial intelligent systems. China Basic Sci, 2000, 8: 9-18 [郑南宁. 认知过程的信息处理和新型人工智能系统. 中国基础科学, 2000, 8: 9-18]&
[8]
Reagans
R,
Mcevily
B.
Network structure and knowledge transfer: the effects of cohesion and range.
Admin Sci Quart,
2003, 48: 240-267
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Network structure and knowledge transfer: the effects of cohesion and range&author=Reagans R&author=Mcevily B&publication_year=2003&journal=Admin Sci Quart&volume=48&pages=240-267
[9]
Holland J H. Adaptation in Natural and Artificial Systems: an Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. Ann Arbor: University of Michigan Press, 1975.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Holland J H. Adaptation in Natural and Artificial Systems: an Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. Ann Arbor: University of Michigan Press, 1975&
[10]
Marr
D.
Artificial intelligence--a personal view.
Artif Intell,
1977, 9: 37-48
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Artificial intelligence--a personal view&author=Marr D&publication_year=1977&journal=Artif Intell&volume=9&pages=37-48
[11]
Russell S J, Norvig P, Canny J F, et al. Artificial Intelligence: A Modern Approach. 2nd ed. Upper Saddle River: Prentice Hall, 2003.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Russell S J, Norvig P, Canny J F, et al. Artificial Intelligence: A Modern Approach. 2nd ed. Upper Saddle River: Prentice Hall, 2003&
[12]
Feigenbaum E A. The art of artificial intelligence: themes and case studies of knowledge engineering. In: Proceedings of the 5th International Joint Conference on Artificial Intelligence. Burlington: Morgan Kaufmann Publishers, 1977. 1014-1029.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Feigenbaum E A. The art of artificial intelligence: themes and case studies of knowledge engineering. In: Proceedings of the 5th International Joint Conference on Artificial Intelligence. Burlington: Morgan Kaufmann Publishers, 1977. 1014-1029&
[13]
Studer
R,
Benjamins
V R,
Fensel
D.
Knowledge engineering: principles and methods.
Data Knowl Eng,
1998, 25: 161-197
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Knowledge engineering: principles and methods&author=Studer R&author=Benjamins V R&author=Fensel D&publication_year=1998&journal=Data Knowl Eng&volume=25&pages=161-197
[14]
Lindsay
R K,
Buchanan
B G,
Feigenbaum
E A, et al.
DENDRAL: a case study of the first expert system for scientific hypothesis formation.
Artif Intell,
1993, 61: 209-261
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=DENDRAL: a case study of the first expert system for scientific hypothesis formation&author=Lindsay R K&author=Buchanan B G&author=Feigenbaum E A&publication_year=1993&journal=Artif Intell&volume=61&pages=209-261
[15]
Lenat D B. CYC: a large-scale investment in knowledge infrastructure. Commun ACM, 1995, 38: 33-38.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lenat D B. CYC: a large-scale investment in knowledge infrastructure. Commun ACM, 1995, 38: 33-38&
[16]
Ong
T H,
Chen
H,
Sung
W K, et al.
Newsmap: a knowledge map for online news.
Decis Support Syst,
2005, 39: 583-597
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Newsmap: a knowledge map for online news&author=Ong T H&author=Chen H&author=Sung W K&publication_year=2005&journal=Decis Support Syst&volume=39&pages=583-597
[17]
Nickel M, Murphy K, Tresp V, et al. A review of relational machine learning for knowledge graphs: from multi-relational link prediction to automated knowledge graph construction. ArXiv:1503.00759, 2015.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nickel M, Murphy K, Tresp V, et al. A review of relational machine learning for knowledge graphs: from multi-relational link prediction to automated knowledge graph construction. ArXiv:1503.00759, 2015&
[18]
Wagner
C.
Breaking the knowledge acquisition bottleneck through conversational knowledge management.
Inf Resour Manage J,
2006, 19: 70-83
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Breaking the knowledge acquisition bottleneck through conversational knowledge management&author=Wagner C&publication_year=2006&journal=Inf Resour Manage J&volume=19&pages=70-83
[19]
Hoekstra R. The knowledge reengineering bottleneck. Semant Web, 2010, 1: 111-115.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hoekstra R. The knowledge reengineering bottleneck. Semant Web, 2010, 1: 111-115&
[20]
Gruber
T R.
A translation approach to portable ontology specifications.
Knowl Acquis,
1993, 5: 199-220
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A translation approach to portable ontology specifications&author=Gruber T R&publication_year=1993&journal=Knowl Acquis&volume=5&pages=199-220
[21]
Armbrust M, Fox A, Griffith R, et al. A view of cloud computing. Commun ACM, 2010, 53: 50-58.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Armbrust M, Fox A, Griffith R, et al. A view of cloud computing. Commun ACM, 2010, 53: 50-58&
[22]
Atzori
L,
Iera
A,
Morabito
G.
The internet of things: a survey.
Comput Netw,
2010, 54: 2787-2805
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The internet of things: a survey&author=Atzori L&author=Iera A&author=Morabito G&publication_year=2010&journal=Comput Netw&volume=54&pages=2787-2805
[23]
Wofford
J.
User-generated content.
New Media Soc,
2012, 14: 1236-1239
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=User-generated content&author=Wofford J&publication_year=2012&journal=New Media Soc&volume=14&pages=1236-1239
[24]
Inkpen
A.
Learning, knowledge acquisition, and strategic alliances.
Eur Manage J,
1998, 16: 223-229
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Learning, knowledge acquisition, and strategic alliances&author=Inkpen A&publication_year=1998&journal=Eur Manage J&volume=16&pages=223-229
[25]
Yamins
D L K,
Dicarlo
J J.
Using goal-driven deep learning models to understand sensory cortex.
Nat Neurosci,
2016, 19: 356-365
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Using goal-driven deep learning models to understand sensory cortex&author=Yamins D L K&author=Dicarlo J J&publication_year=2016&journal=Nat Neurosci&volume=19&pages=356-365
[26]
Lévy P. Collective Intelligence. New York: Plenum/Harper Collins, 1997.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lévy P. Collective Intelligence. New York: Plenum/Harper Collins, 1997&
[27]
Bonabeau E. Decisions 2.0: the power of collective intelligence. MIT Sloan Manage Rev, 2009, 50: 45.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bonabeau E. Decisions 2.0: the power of collective intelligence. MIT Sloan Manage Rev, 2009, 50: 45&
[28]
Gray
P H,
Meister
D B.
Introduction: fragmentation and integration in knowledge management research.
Inf Tech People,
2003, 16: 259-265
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Introduction: fragmentation and integration in knowledge management research&author=Gray P H&author=Meister D B&publication_year=2003&journal=Inf Tech People&volume=16&pages=259-265
[29]
Cox S A, Perkins J S. The role of E-collaboration systems in knowledge management. In: E-Collaboration: Concepts, Methodologies, Tools, and Applications. Hershey: IGI Global Publishes, 2009. 600-607.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cox S A, Perkins J S. The role of E-collaboration systems in knowledge management. In: E-Collaboration: Concepts, Methodologies, Tools, and Applications. Hershey: IGI Global Publishes, 2009. 600-607&
[30]
Li
L,
Wen
D,
Zheng
N N, et al.
Cognitive cars: a new frontier for ADAS research.
IEEE T Intell Transp,
2012, 13: 395-407
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cognitive cars: a new frontier for ADAS research&author=Li L&author=Wen D&author=Zheng N N&publication_year=2012&journal=IEEE T Intell Transp&volume=13&pages=395-407
[31]
Zheng N N, Tang S, Cheng H, et al. Toward intelligent driver-assistance and safety warning system. IEEE Intell Syst, 2004, 19: 8-11.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zheng N N, Tang S, Cheng H, et al. Toward intelligent driver-assistance and safety warning system. IEEE Intell Syst, 2004, 19: 8-11&
[32]
Knoblock C A, Minton S, Ambite J L, et al. Mixed-initiative, multi-source information assistants. In: Proceedings of the 10th International Conference on World Wide Web. Hong Kong: ACM, 2001. 697-707.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Knoblock C A, Minton S, Ambite J L, et al. Mixed-initiative, multi-source information assistants. In: Proceedings of the 10th International Conference on World Wide Web. Hong Kong: ACM, 2001. 697-707&
[33]
Dasarathy B V. Multi-sensor, multi-source information fusion: architecture, algorithms, and applications--a panoramic overview. In: Proceedings of the 2nd IEEE International Conference on Computational Cybernetics, 2004, doi: 10.1109/ICCCYB.2004.1437643.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dasarathy B V. Multi-sensor, multi-source information fusion: architecture, algorithms, and applications--a panoramic overview. In: Proceedings of the 2nd IEEE International Conference on Computational Cybernetics, 2004, doi: 10.1109/ICCCYB.2004.1437643&
[34]
Atrey
P K,
Hossain
M A,
El
Saddik A, et al.
Multimodal fusion for multimedia analysis: a survey.
Multimedia Syst,
2010, 16: 345-379
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Multimodal fusion for multimedia analysis: a survey&author=Atrey P K&author=Hossain M A&author=El Saddik A&publication_year=2010&journal=Multimedia Syst&volume=16&pages=345-379
[35]
Chong
C Y,
Kumar
S P.
Sensor networks: evolution, opportunities, and challenges.
Proc IEEE,
2003, 91: 1247-1256
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sensor networks: evolution, opportunities, and challenges&author=Chong C Y&author=Kumar S P&publication_year=2003&journal=Proc IEEE&volume=91&pages=1247-1256
[36]
Hall
D L,
Llinas
J.
An introduction to multisensor data fusion.
Proc IEEE,
1997, 85: 6-23
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=An introduction to multisensor data fusion&author=Hall D L&author=Llinas J&publication_year=1997&journal=Proc IEEE&volume=85&pages=6-23
[37]
Greenberg
J,
Pyszczynski
T.
The effect of an overheard ethnic slur on evaluations of the target: how to spread a social disease.
J Exp Soc Psychol,
1985, 21: 61-72
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The effect of an overheard ethnic slur on evaluations of the target: how to spread a social disease&author=Greenberg J&author=Pyszczynski T&publication_year=1985&journal=J Exp Soc Psychol&volume=21&pages=61-72
[38]
Wu
X,
Liu
Z.
How community structure influences epidemic spread in social networks.
Phys A Stat Mech Its Appl,
2008, 387: 623-630
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=How community structure influences epidemic spread in social networks&author=Wu X&author=Liu Z&publication_year=2008&journal=Phys A Stat Mech Its Appl&volume=387&pages=623-630
[39]
Song S, Li Q, Bao H. Detecting dynamic association among twitter topic. In: Proceedings of the 21st International Conference Companion on World Wide Web. Lyon: ACM, 2012. 605-606.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Song S, Li Q, Bao H. Detecting dynamic association among twitter topic. In: Proceedings of the 21st International Conference Companion on World Wide Web. Lyon: ACM, 2012. 605-606&
[40]
Zhu
J,
Lu
J,
Yu
X.
Flocking of multi-agent non-holonomic systems with proximity graphs.
IEEE Trans Circuit Syst I-Regular Paper,
2013, 60: 199-210
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Flocking of multi-agent non-holonomic systems with proximity graphs&author=Zhu J&author=Lu J&author=Yu X&publication_year=2013&journal=IEEE Trans Circuit Syst I-Regular Paper&volume=60&pages=199-210
[41]
Axley S R. Managerial and organizational communication in terms of the conduit metaphor. Acad Manage Rev, 1984, 9: 428-437.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Axley S R. Managerial and organizational communication in terms of the conduit metaphor. Acad Manage Rev, 1984, 9: 428-437&
[42]
Ginsberg J, Mohebbi M H, Patel R S, et al. Detecting influenza epidemics using search engine query data. Nature, 2008, 457: 1012-1014.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ginsberg J, Mohebbi M H, Patel R S, et al. Detecting influenza epidemics using search engine query data. Nature, 2008, 457: 1012-1014&
[43]
Lazer
D,
Kennedy
R,
King
G, et al.
The parable of google flu: traps in big data analysis.
Science,
2014, 343: 1203-1205
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The parable of google flu: traps in big data analysis&author=Lazer D&author=Kennedy R&author=King G&publication_year=2014&journal=Science&volume=343&pages=1203-1205
[44]
Wu
X,
Zhu
X,
Wu
G Q, et al.
Data mining with big data.
IEEE Trans Knowl Data Eng,
2014, 26: 97-107
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Data mining with big data&author=Wu X&author=Zhu X&author=Wu G Q&publication_year=2014&journal=IEEE Trans Knowl Data Eng&volume=26&pages=97-107
[45]
Cheeseman P, Stutz J. Bayesian classification (AutoClass): theory and results. In: Advances in Knowledge Discovery and Data Mining. Menlo Park: AAAI Press, 1996.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cheeseman P, Stutz J. Bayesian classification (AutoClass): theory and results. In: Advances in Knowledge Discovery and Data Mining. Menlo Park: AAAI Press, 1996&
[46]
Jeffrey R C. The Logic of Decision. New York: Mcgraw-Hill Book Co. Inc., 1965.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Jeffrey R C. The Logic of Decision. New York: Mcgraw-Hill Book Co. Inc., 1965&
[47]
Dreiseitl
S,
Ohno-Machado
L.
Logistic regression and artificial neural network classification models: a methodology review.
J Biomed Inf,
2002, 35: 352-359
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Logistic regression and artificial neural network classification models: a methodology review&author=Dreiseitl S&author=Ohno-Machado L&publication_year=2002&journal=J Biomed Inf&volume=35&pages=352-359
[48]
LeCun
Y,
Bengio
Y,
Hinton
G.
Deep learning.
Nature,
2015, 521: 436-444
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Deep learning&author=LeCun Y&author=Bengio Y&author=Hinton G&publication_year=2015&journal=Nature&volume=521&pages=436-444
[49]
Rowley
H A,
Baluja
S,
Kanade
T.
Neural network-based face detection.
IEEE Trans Pattern Anal Mach Intell,
1998, 20: 23-38
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Neural network-based face detection&author=Rowley H A&author=Baluja S&author=Kanade T&publication_year=1998&journal=IEEE Trans Pattern Anal Mach Intell&volume=20&pages=23-38
[50]
Hecht-Nielsen R. Theory of the backpropagation neural network. In: Proceedings of International 1989 Joint Conference on Neural Networks. Piscataway: IEEE, 1989. 593-605.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hecht-Nielsen R. Theory of the backpropagation neural network. In: Proceedings of International 1989 Joint Conference on Neural Networks. Piscataway: IEEE, 1989. 593-605&
[51]
Kawato
M,
Furukawa
K,
Suzuki
R.
A hierarchical neural-network model for control and learning of voluntary movement.
Biol Cybern,
1987, 57: 169-185
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A hierarchical neural-network model for control and learning of voluntary movement&author=Kawato M&author=Furukawa K&author=Suzuki R&publication_year=1987&journal=Biol Cybern&volume=57&pages=169-185
[52]
Piater J H, Grupen R A. Feature learning for recognition with Bayesian networks. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society, 2000. 17-20.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Piater J H, Grupen R A. Feature learning for recognition with Bayesian networks. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society, 2000. 17-20&
[53]
Lee H, Pham P, Largman Y, et al. Unsupervised feature learning for audio classification using convolutional deep belief networks. In: Proceedings of the 23rd Annual Conference on Neural Information Processing Systems, Vancouver, 2009. 1096-1104.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lee H, Pham P, Largman Y, et al. Unsupervised feature learning for audio classification using convolutional deep belief networks. In: Proceedings of the 23rd Annual Conference on Neural Information Processing Systems, Vancouver, 2009. 1096-1104&
[54]
Wang Y X. The theoretical framework and cognitive process of learning. In: Proceedings of the 6th IEEE International Conference on Cognitive Informatics, California, 2007. 470-479.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wang Y X. The theoretical framework and cognitive process of learning. In: Proceedings of the 6th IEEE International Conference on Cognitive Informatics, California, 2007. 470-479&
[55]
Luger G F. Artificial Intelligence: Structures and Strategies for Complex Problem Solving. New York: Pearson Education, 2005.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Luger G F. Artificial Intelligence: Structures and Strategies for Complex Problem Solving. New York: Pearson Education, 2005&
[56]
Brachman
R J.
What's in a concept: structural foundations for semantic networks.
Int J Man-Mach Stud,
1977, 9: 127-152
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=What's in a concept: structural foundations for semantic networks&author=Brachman R J&publication_year=1977&journal=Int J Man-Mach Stud&volume=9&pages=127-152
[57]
Lu
C Y.
Knowledge map: an approach to knowledge acquisition in developing engineering expert systems.
Eng Comput,
1987, 3: 59-68
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Knowledge map: an approach to knowledge acquisition in developing engineering expert systems&author=Lu C Y&publication_year=1987&journal=Eng Comput&volume=3&pages=59-68
[58]
Shiffrin
R M,
Börner
K.
Mapping knowledge domains.
Proc Natl Acad Sci,
2004, 101: 5183-5185
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mapping knowledge domains&author=Shiffrin R M&author=Börner K&publication_year=2004&journal=Proc Natl Acad Sci&volume=101&pages=5183-5185
[59]
Chen Y, Liu Z Y. The rise of mapping knowledge domain. Stud Sci Sci, 2005, 23: 149-154.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chen Y, Liu Z Y. The rise of mapping knowledge domain. Stud Sci Sci, 2005, 23: 149-154&
[60]
Zhou D, Bousquet O, Lal T N, et al. Learning with local and global consistency. Adv Neural Inf Proc Syst, 2004, 16: 321-328.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhou D, Bousquet O, Lal T N, et al. Learning with local and global consistency. Adv Neural Inf Proc Syst, 2004, 16: 321-328&
[61]
Ahn H S, Chen Y Q, Moore K L. Iterative learning control: brief survey and categorization. IEEE Trans Syst Man Cy C, 2007, 37: 1099-1149.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ahn H S, Chen Y Q, Moore K L. Iterative learning control: brief survey and categorization. IEEE Trans Syst Man Cy C, 2007, 37: 1099-1149&
[62]
Nguyen-Tuong
D,
Peters
J.
Model learning for robot control: a survey.
Cogn Process,
2011, 12: 319-340
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Model learning for robot control: a survey&author=Nguyen-Tuong D&author=Peters J&publication_year=2011&journal=Cogn Process&volume=12&pages=319-340
[63]
Fayyad U. From data mining to knowledge discovery in databases. AI Mag, 1996, 17: 37-54.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fayyad U. From data mining to knowledge discovery in databases. AI Mag, 1996, 17: 37-54&
[64]
Ishizaka H, Arikawa S. Model inference. Ipsj Magazine, 1991, 32: 236-245.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ishizaka H, Arikawa S. Model inference. Ipsj Magazine, 1991, 32: 236-245&
[65]
Yang
C,
Wang
G,
Li
Y, et al.
Study on knowledge reasoning based on extended formulas.
IFIP Intl Federat Inf Proc,
2005, 187: 797-805
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Study on knowledge reasoning based on extended formulas&author=Yang C&author=Wang G&author=Li Y&publication_year=2005&journal=IFIP Intl Federat Inf Proc&volume=187&pages=797-805
[66]
Kirsh D. A few thoughts on cognitive overload. Intellectica, 2000, 30: 41-42.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kirsh D. A few thoughts on cognitive overload. Intellectica, 2000, 30: 41-42&
[67]
Tene O, Polonetsky J. Big data for all: privacy and user control in the age of analytics. Nw J Tech Intell Prop, 2012, 11: 1-27.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tene O, Polonetsky J. Big data for all: privacy and user control in the age of analytics. Nw J Tech Intell Prop, 2012, 11: 1-27&
[68]
Townsend A M. Smart Cities: Big Data, Civic Hackers, and the Quest for A New Utopia. New York: WW Norton & Company, 2013.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Townsend A M. Smart Cities: Big Data, Civic Hackers, and the Quest for A New Utopia. New York: WW Norton & Company, 2013&
[69]
Langley
P,
Zytkow
J M.
Data-driven approaches to empirical discovery.
Artif Intell,
1989, 40: 283-312
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Data-driven approaches to empirical discovery&author=Langley P&author=Zytkow J M&publication_year=1989&journal=Artif Intell&volume=40&pages=283-312
[70]
Chen W, Zhang S. Experience formula discovery system FDD. Mini-Micro Syst, 1999, 6: 410-413.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chen W, Zhang S. Experience formula discovery system FDD. Mini-Micro Syst, 1999, 6: 410-413&
[71]
Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B (Methodological), 1977, 39: 1-38.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B (Methodological), 1977, 39: 1-38&
[72]
Bach F R, Lanckriet G R G, Jordan M I. Multiple kernel learning, conic duality, and the SMO algorithm. In: Proceedings of the 21st International Conference on Machine Learning. New York: ACM, 2004.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bach F R, Lanckriet G R G, Jordan M I. Multiple kernel learning, conic duality, and the SMO algorithm. In: Proceedings of the 21st International Conference on Machine Learning. New York: ACM, 2004&
[73]
Wang J, Zheng N. Multivariate linear correlation analysis. ArXiv:1401.4827, 2014.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wang J, Zheng N. Multivariate linear correlation analysis. ArXiv:1401.4827, 2014&
[74]
LeCun
Y,
Boser
B,
Denker
J S, et al.
Backpropagation applied to handwritten zip code recognition.
Neural Comput,
1989, 1: 541-551
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Backpropagation applied to handwritten zip code recognition&author=LeCun Y&author=Boser B&author=Denker J S&publication_year=1989&journal=Neural Comput&volume=1&pages=541-551
[75]
Deng J, Dong W, Socher R, et al. Imagenet: a large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Miami Beach: IEEE, 2009. 248-255.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Deng J, Dong W, Socher R, et al. Imagenet: a large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Miami Beach: IEEE, 2009. 248-255&
[76]
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. Adv Neural Inf Proc Syst, 2012, 25: 2012.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. Adv Neural Inf Proc Syst, 2012, 25: 2012&
[77]
He K, Zhang X, Ren S, et al. Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV). Chile: IEEE Computer Society, 2015. 1026-1034.
Google Scholar
http://scholar.google.com/scholar_lookup?title=He K, Zhang X, Ren S, et al. Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV). Chile: IEEE Computer Society, 2015. 1026-1034&
[78]
Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems. Quebec: Neural Information Processing Systems Foundation Inc., 2015. 91-99.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems. Quebec: Neural Information Processing Systems Foundation Inc., 2015. 91-99&
[79]
Sun Y, Wang X, Tang X. Deep learning face representation from predicting 10000 classes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Guangzhou: Computer Vision Foundation, 2014. 1891-1898.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sun Y, Wang X, Tang X. Deep learning face representation from predicting 10000 classes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Guangzhou: Computer Vision Foundation, 2014. 1891-1898&
[80]
Wang L, Qiao Y, Tang X. Action recognition with trajectory-pooled deep-convolutional descriptors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, 2015. 4305-4314.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wang L, Qiao Y, Tang X. Action recognition with trajectory-pooled deep-convolutional descriptors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, 2015. 4305-4314&
[81]
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. ArXiv:1409.1556, 2014.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. ArXiv:1409.1556, 2014&
[82]
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, 2015: 3431-3440.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, 2015: 3431-3440&
[83]
Vapnik V, Izmailov R. Learning using privileged information: similarity control and knowledge transfer. J Mach Learn Res, 2015, 16: 2023-2049.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Vapnik V, Izmailov R. Learning using privileged information: similarity control and knowledge transfer. J Mach Learn Res, 2015, 16: 2023-2049&
[84]
Chris
E,
Stewart
T C,
Xuan
C, et al.
A large-scale model of the functioning brain.
Science,
2012, 338: 1202-1205
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A large-scale model of the functioning brain&author=Chris E&author=Stewart T C&author=Xuan C&publication_year=2012&journal=Science&volume=338&pages=1202-1205
[85]
Lake
B M,
Salakhutdinov
R B,
Tnenbaum
J.
Human-level concept learning through probabilistic program induction.
Science,
2015, 350: 1332-1338
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Human-level concept learning through probabilistic program induction&author=Lake B M&author=Salakhutdinov R B&author=Tnenbaum J&publication_year=2015&journal=Science&volume=350&pages=1332-1338
[86]
Kohonen T. Self-Organizing Maps. New York: Springer, 1995.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kohonen T. Self-Organizing Maps. New York: Springer, 1995&
[87]
Kohonen
T,
Somervuo
P.
Self-organizing maps of symbol strings.
Neurocomputing,
1998, 21: 19-30
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Self-organizing maps of symbol strings&author=Kohonen T&author=Somervuo P&publication_year=1998&journal=Neurocomputing&volume=21&pages=19-30
[88]
Patel
V L,
Shortliffe
E H,
Stefanelli
M, et al.
The coming of age of artificial intelligence in medicine.
Artif Intell Med,
2009, 46: 5-17
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The coming of age of artificial intelligence in medicine&author=Patel V L&author=Shortliffe E H&author=Stefanelli M&publication_year=2009&journal=Artif Intell Med&volume=46&pages=5-17
[89]
Gerola H. IBM-Watson. Bull Amer Astron Soc, 1980, 12: 131.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gerola H. IBM-Watson. Bull Amer Astron Soc, 1980, 12: 131&
[90]
Shader
R I.
Some reflections on IBM watson and on women's health.
Clin Ther,
2016, 38: 1-2
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Some reflections on IBM watson and on women's health&author=Shader R I&publication_year=2016&journal=Clin Ther&volume=38&pages=1-2
[91]
Tian Y, Zhang S Y, Luo B, et al. Research progress in impact of heat wave on human health. Adv Meteorol Sci Tech, 2013, 2: 49-54 [田颖, 张书余, 罗斌, 等. 热浪对人体健康影响的研究进展. 气象科技进展, 2013, 2: 49-54].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tian Y, Zhang S Y, Luo B, et al. Research progress in impact of heat wave on human health. Adv Meteorol Sci Tech, 2013, 2: 49-54 [田颖, 张书余, 罗斌, 等. 热浪对人体健康影响的研究进展. 气象科技进展, 2013, 2: 49-54]&
[92]
Garabedian
V D,
Pawlotsky
J M,
Authier
F J, et al.
Myasthenia gravis and hepatitis C virus infection.
J Viral Hepatitis,
1996, 3: 329-332
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Myasthenia gravis and hepatitis C virus infection&author=Garabedian V D&author=Pawlotsky J M&author=Authier F J&publication_year=1996&journal=J Viral Hepatitis&volume=3&pages=329-332
[93]
Silver
D,
Huang
A,
Maddison
C J, et al.
Mastering the game of Go with deep neural networks and tree search.
Nature,
2016, 529: 484-489
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mastering the game of Go with deep neural networks and tree search&author=Silver D&author=Huang A&author=Maddison C J&publication_year=2016&journal=Nature&volume=529&pages=484-489
[94]
Ghahramani
Z.
Probabilistic machine learning and artificial intelligence.
Nature,
2015, 521: 452-459
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Probabilistic machine learning and artificial intelligence&author=Ghahramani Z&publication_year=2015&journal=Nature&volume=521&pages=452-459
[95]
Ferrenberg
A M,
Swendsen
R H.
Optimized monte carlo data analysis.
Phys Rev Lett,
1989, 63: 1195-1198
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Optimized monte carlo data analysis&author=Ferrenberg A M&author=Swendsen R H&publication_year=1989&journal=Phys Rev Lett&volume=63&pages=1195-1198
[96]
Baheti R, Gill H. Cyber-physical systems. Impact Control Tech, 2011, 13: 1-6.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Baheti R, Gill H. Cyber-physical systems. Impact Control Tech, 2011, 13: 1-6&
[97]
Liu
Z,
Yang
D S,
Wen
D, et al.
Cyber-physical-social systems for command and control.
IEEE Intell Syst,
2011, 26: 92-96
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cyber-physical-social systems for command and control&author=Liu Z&author=Yang D S&author=Wen D&publication_year=2011&journal=IEEE Intell Syst&volume=26&pages=92-96
[98]
Murase
H.
Artificial intelligence in agriculture.
Comput Electron Agric,
2000, 29: 1-2
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Artificial intelligence in agriculture&author=Murase H&publication_year=2000&journal=Comput Electron Agric&volume=29&pages=1-2
[99]
Barrett J R, Jones D D. Knowledge engineering in agriculture. Knowl Eng Agric, 1989, 8: 214.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Barrett J R, Jones D D. Knowledge engineering in agriculture. Knowl Eng Agric, 1989, 8: 214&
[100]
Aitkenhead
M J,
Dalgetty
I A,
Mullins
C E, et al.
Weed and crop discrimination using image analysis and artificial intelligence methods.
Comput Electron Agric,
2003, 39: 157-171
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Weed and crop discrimination using image analysis and artificial intelligence methods&author=Aitkenhead M J&author=Dalgetty I A&author=Mullins C E&publication_year=2003&journal=Comput Electron Agric&volume=39&pages=157-171
[101]
Rykiel
E J.
Artificial intelligence and expert systems in ecology and natural resource management.
Ecol Model,
1989, 46: 3-8
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Artificial intelligence and expert systems in ecology and natural resource management&author=Rykiel E J&publication_year=1989&journal=Ecol Model&volume=46&pages=3-8