logo

SCIENTIA SINICA Informationis, Volume 46 , Issue 11 : 1542-1554(2016) https://doi.org/10.1360/N112016-00137

Semi-tensor product of matrices approach to stability and stabilization analysis of bounded Petri net systems

More info
  • ReceivedMay 26, 2016
  • AcceptedAug 2, 2016
  • PublishedNov 8, 2016

Abstract


Funded by

国家自然科学基金(61573199)

国家自然科学基金(61573200)

天津市自然科学基金(14JCYBJC18700)

天津市自然科学基金(13JCYBJC17400)


References

[1] Cassandras C G, Lafortune S. Introduction to Disctete Event Systems. 2nd ed. New York: Springer, 2008. Google Scholar

[2] Peterson J L. Petri Net Theory and the Modeling of Systems. Englewood Cliffs: Prentice-Hall, 1981. Google Scholar

[3] Murata T. Petri nets: properties, analysis and applications. Proc IEEE, 1989, 77: 541-580 CrossRef Google Scholar

[4] Giua A, Seatzu C. Petri nets for the control of discrete event systems. Softw Syst Model, 2015, 14: 693-701 CrossRef Google Scholar

[5] Notomi M, Murata T. Hierarchical reachability graph of bounded Petri nets for concurrent-software analysis. IEEE Trans Softw Eng, 1994, 20: 325-336 CrossRef Google Scholar

[6] Ezpeleta J, Colom J M, Martinez J. A Petri net-based deadlock prevention policy for flexible manufacturing systems. IEEE Trans Robot Automat, 1995, 11: 173-184 CrossRef Google Scholar

[7] Li Z W, Zhou M C. Elementary siphons of Petri nets and their applications to deadlock prevention in flexible manufacturing systems. IEEE Trans Syst, Man, Cybern A, Syst, Humans, 2004, 34: 38-51. Google Scholar

[8] Steggles L, Banks R, Shaw O, et al. Qualitatively modeling and analyzing genetic regulatory networks: a Petri net approach. Bioinformatics, 2007, 23: 336-343 CrossRef Google Scholar

[9] Giua A, Seatzu C. A systems theory view of Petri nets. In: Advances in Control Theory and Applications. Berlin: Springer-Verlag, 2007. 99-127. Google Scholar

[10] Han X G, Chen Z Q, Zhang K Z, et al. Modeling and reachability analysis of a class of Petri nets via semi-tensor product of matrices. In: Proceedings of the 34th Chinese Control Conference, Hangzhou, 2015. 6586-6591. Google Scholar

[11] Han X G, Chen Z Q, Liu Z X, et al. Calculation of siphons and minimal siphons in Petri nets based on semi-tensor product of matrices. IEEE Trans Syst, Man, Cybern, Syst, in press. doi: 10.1109/TSMC.2015.2507162. Google Scholar

[12] Han X G, Chen Z Q, Liu Z X, et al. STP-based judgment method of reversibility and liveness of bounded Petri nets. J Syst Sci Math Sci, 2016, 36: 361-370 [韩晓光, 陈增强, 刘忠信, 等. 有界Petri网的可逆性和活性的STP判别方法. 系统科学与数学, 2016, 36: 361-370]. Google Scholar

[13] Han X G, Chen Z Q, Zhang K Z, et al. Calculating basis siphons of Petri nets based on semi-tensor product of matrices. In: Proceedings of the 35th Chinese Control Conference, Chengdu, 2016. 2331-2336. Google Scholar

[14] Cheng D Z. Semi-tensor product of matrices and its application to Morgen's problem. Sci China Ser F-Inf Sci, 2001, 44: 195-212. Google Scholar

[15] Song J L, Li Z Q. Partial state stability and stabilization of Boolean control networks. Sci Sin Inform, 2015, 45: 1389-1401 [宋金利, 李志强. 布尔控制网络部分状态变量的稳定与镇定. 中国科学: 信息科学, 2015, 45: 1389-1401]. Google Scholar

[16] Zhang L J, Zhang K Z. Controllability of time-variant Boolean control networks and its application to Boolean control networks with finite memories. Sci China Inf Sci, 2013, 56: 108201. Google Scholar

[17] Cheng D Z. On finite potential games. Automatica, 2014, 50: 1793-1801 CrossRef Google Scholar

[18] Cheng D Z, He F H, Qi H S, et al. Modeling, analysis and control of networked evolutionary games. IEEE Trans Autom Contr, 2015, 60: 2402-2415 CrossRef Google Scholar

[19] Xu X R, Hong Y G. Matrix expression and reachability analysis of finite automata. J Contr Theory Appl, 2012, 10: 210-215 CrossRef Google Scholar

[20] Xu X R, Hong Y G. Matrix approach to model matching of asynchronous sequential machines. IEEE Trans Autom Contr, 2013, 58: 2974-2979 CrossRef Google Scholar

[21] Cheng D Z, Qi H S, Zhao Y. An Introduction to Semi-Tensor Product of Matrices and its Applications. Singapore: World Scientific, 2012. Google Scholar

[22] Wu Z H. Introduction to Petri Nets. Beijing: China Machine Press, 2006 [吴哲辉. Petri网导论. 北京: 机械工业出版社, 2006]. Google Scholar

[23] Ross K A, Wright C R B. Discrete Mathematics. 5th ed. New York: Prentice Hall, Inc, 2003. Google Scholar

[24] Wu Z H. Analysis and implementation of liveness and fairness of bounded Petri nets. Chinese J Comput, 1989, 12: 267-278 [吴哲辉. 有界Petri网的活性和公平性的分析与实现. 计算机学报, 1989, 12: 267-278]. Google Scholar