logo

SCIENTIA SINICA Informationis, Volume 50 , Issue 4 : 603-616(2020) https://doi.org/10.1360/N112018-00269

Real-time detection and elimination method for BDS signal-in-space anomalies

More info
  • ReceivedOct 9, 2018
  • AcceptedMar 18, 2019
  • PublishedFeb 27, 2020

Abstract

The BeiDou navigation satellite system (BDS) signal-in-space anomaly is an important factor affecting the signal-in-space quality assessment. Detecting and excluding signal-in-space anomalies is not only a method for constructing a BDS signal-in-space fault model but can also help ensure the BDS navigation and positioning integrity. Traditional methods, based on post precision ephemeris and broadcast ephemeris, maintain some disadvantages, such as a large delay and a low sampling rate. In this paper, a carrier-phase smoothing pseudorange algorithm based on Kalman filtering is proposed, and a real-time estimation method of a BDS signal-in-space user range error is established to detect and eliminate signal-in-space anomalies in real time, based on the statistical characteristics of signal-in-space user range error. The experimental results, based on 1 Hz data of the international GNSS service (IGS) ground observation network, show that the proposed method has an estimation accuracy of 1.15 m for a BDS signal-in-space user range error, which can effectively identify signal-in-space anomalies caused by satellite orbit and clock faults.


Funded by

国家自然科学基金(41676088,61773132,61633008,61803115)

工信部第七代超深水钻井平台创新项目

黑龙江省杰出青年研究科学基金(JC2018019)

中央高校基础研究基金(HEUCFP201768)


Acknowledgment

感谢 IGS 组织及其下辖数据分析中心提供的广播星历、精密星历和测站观测信息等资料, 感谢各位同仁在论文写作和修改过程中提出的宝贵意见.


References

[1] CNSO. BeiDou Navigation Satellite System Signal in Space Interface Control Document, BeiDou SIS ICD. Beijing: China Satellite Navigation Office, 2016. Google Scholar

[2] Walter T, Blanch J, Enge P. Evaluation of Signal in Space Error Bounds to Support Aviation Integrity. Navigation, 2010, 57: 101-113 CrossRef Google Scholar

[3] Li L. Ground based augmentation system: positioning and integrity monitoring. Dissertation for Ph.D. Degree. Harbin: Harbin Engineering University, 2012. Google Scholar

[4] Heng L. Safe satellite navigation with multiple constellations: global monitoring of GPS and GLONASS signal-in-space anomalies. Dissertation for Ph.D. Degree. Palo Alto: Stanford University, 2012. Google Scholar

[5] CNSO. BeiDou navigation satellite system open service performance standard, BeiDou OS SPS. Beijing: China Satellite Navigation Office, 2013. Google Scholar

[6] Perea S, Meurer M, Rippl M. URA/SISA Analysis for GPS and Galileo to Support ARAIM. J Inst Navig, 2017, 64: 237-254 CrossRef Google Scholar

[7] Cohenour C, Van Graas F. GPS Orbit and Clock Error Distributions. Navigation, 2011, 58: 17-28 CrossRef Google Scholar

[8] Gao G X, Tang H, Blanch J, et al. Methodology and case studies of signal-in-space error calculation: top-down meets bottom-up. In: Proceedings of the 22nd International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2009), Savannah, 2009. 2824--2831. Google Scholar

[9] Liang H, Gao G X, Walter T, et al. Automated verification of potential GPS signal-in-space anomalies using ground observation data. In: Proceedings of IEEE/ION PLANS 2012, Myrtle Beach, 2012. 1111--1118. Google Scholar

[10] Gunning K, Walter T, Enge P. Characterization of GLONASS broadcast clock and ephemeris: nominal performance and fault trends for ARAIM. In: Proceedings of International Technical Meeting of the Institute of Navigation, Monterey, 2017. 170--183. Google Scholar

[11] Jiang H, Wang H, Wang Z. Real-Time Monitoring for BDS Signal-In-Space Anomalies Using Ground Observation Data.. Sensors, 2018, 18: 1816 CrossRef PubMed Google Scholar

[12] Kovach K, Berg J, Lin V. Investigation of upload anomalies affecting IIR satellites in October 2007. In: Proceedings of the 21st International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2008), Savannah, 2008. 1679--1687. Google Scholar

[13] Heng L, Gao G X, Walter T, et al. GLONASS signal-in-space anomalies since 2009. In: Proceedings of the 25th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2012), Nashville, 2012. 833--842. Google Scholar

[14] Liang Heng , Gao G X, Walter T. GPS Signal-in-Space Integrity Performance Evolution in the Last Decade. IEEE Trans Aerosp Electron Syst, 2012, 48: 2932-2946 CrossRef ADS Google Scholar

[15] Yang Y X, Li J L, Wang A B. Preliminary assessment of the navigation and positioning performance of BeiDou regional navigation satellite system. Sci China Earth Sci, 2014, 57: 144-152 CrossRef Google Scholar

[16] Walter T, Blanch J. Characterization of GNSS clock and ephemeris errors to support ARAIM. In: Proceedings of the ION 2015 Pacific PNT Meeting, Honolulu, 2015. 920--931. Google Scholar

[17] Heng L, Gao G X, Walter T, et al. GPS ephemeris error screening and results for 2006--2009. In: Proceedings of International Technical Meeting of the Institute of Navigation, San Diego, 2010. 1014--1022. Google Scholar

[18] Heng L, Gao G X, Walter T, et al. Statistical characterization of GPS signal-in-space errors. In: Proceedings of International Technical Meeting of the Institute of Navigation, San Diego, 2011. 312--319. Google Scholar

[19] Chen L, Jiao W H, Huang X R, et al. Study on signal-in-space errors calculation method and statistical characterization of BeiDou navigation satellite system. In: Proceedings of China satellite navigation conference (CSNC), 2013. 423--434. Google Scholar

[20] Wu Y, Liu X, Liu W. Long-term behavior and statistical characterization of BeiDou signal-in-space errors. GPS Solut, 2017, 21: 1907-1922 CrossRef Google Scholar

[21] Montenbruck O, Steigenberger P, Hauschild A. Broadcast versus precise ephemerides: a multi-GNSS perspective. GPS Solut, 2015, 19: 321-333 CrossRef Google Scholar

[22] Montenbruck O, Steigenberger P, Hauschild A. Multi-GNSS signal-in-space range error assessment - Methodology and results. Adv Space Res, 2018, 61: 3020-3038 CrossRef ADS Google Scholar

[23] Dilssner F, Springer T, Schönemann E, et al. Estimation of satellite antenna phase center corrections for BeiDou. In: Proceedings of IGS workshop 2014, Pasadena, 2014. Google Scholar

[24] Guo J, Xu X, Zhao Q. Precise orbit determination for quad-constellation satellites at Wuhan University: strategy, result validation, and comparison. J Geod, 2016, 90: 143-159 CrossRef ADS Google Scholar

[25] U.S. Department of Defense. Global Positioning System Standard Positioning Service Performance Standard. 4th ed. Washington: US Government, 2008. Google Scholar

[26] Saastamoinen J, Richard J R. Simultaneous drying and pyrolysis of solid fuel particles. Combust Flame, 1996, 106: 288-300 CrossRef Google Scholar

  • Figure 1

    (Color online) The radial error of orbit in the case that the antenna phase center offset and variations are not corrected (from top to bottom are the results of GEO satellite C01, IGSO satellite C06, and MEO satellite C11)

  • Figure 2

    (Color online) The radial error of orbit in the case that the antenna phase center offset and variations are corrected (from top to bottom are the results of GEO satellite C01, IGSO satellite C06, and MEO satellite C11)

  • Figure 3

    (Color online) Statistical distribution of IURE (from left to right are the results of NNOR, GAMG, JFNG, KRGG, NTUS, and PTGG stations)

  • Figure 4

    (Color online) IURE histogram (from left to right are the results of GEO satellite C01, IGSO satellite C06, and MEO satellite C11)

  • Figure 5

    (Color online) The kurtosis and skewness of the IURE distributions

  • Figure 6

    (Color online) The estimation errors of IURE (from top to bottom are IURE estimation errors using methods (1), (2), and (3))

  • Figure 7

    (Color online) Using real-time IURE estimation method to detect jumping anomalies caused by orbit faults

  • Figure 8

    (Color online) Using real-time IURE estimation method to detect anomalies caused by clock failures

  • Figure 9

    (Color online) Using real-time IURE estimation method to detect anomalies caused by orbit failures

  • Table 1   Mean and STD of IURE for all stations (unit: m)
    PRN/type Mean STD PRN/type Mean STD
    C01 $-$0.84 1.52 C10 $-$1.20 1.21
    C02 2.51 1.24 C13 0.32 0.98
    C03 0.64 1.73 C11 0.68 0.93
    C04 $-$0.43 1.57 C12 0.76 1.05
    C05 0.55 1.41 C14 0.98 1.00
    C06 $-$1.16 1.14 OC13 0.70 0.98
    C07 $-$0.38 0.77 GEO 0.47 1.48
    C08 $-$0.66 0.97 IGSO $-$0.72 1.06
    C09 $-$1.27 1.04 MEO 0.81 1.03
  • Table 2   The RMS values of IURE estimation errors (unit: m)
    Type Method NNOR GAMG JFNG KRGG NTUS PTGG Total
    GEO (1) 1.36 1.50 1.52 1.30 1.44 1.54 1.44
    (2) 1.31 1.45 1.36 1.29 1.44 1.43 1.38
    (3) 1.25 1.10 1.29 1.18 1.40 1.41 1.27
    IGSO (1) 1.70 1.55 1.56 1.32 0.93 1.34 1.40
    (2) 1.52 1.35 1.35 1.27 0.93 1.02 1.24
    (3) 1.44 1.17 1.30 1.22 0.87 0.90 1.15
    MEO (1) 1.53 1.56 1.45 1.10 1.20 1.23 1.35
    (2) 1.16 1.10 1.11 1.04 1.20 0.89 1.08
    (3) 1.09 0.88 1.03 0.90 1.17 0.87 0.99
    AllSat (1) 1.53 1.54 1.51 1.24 1.19 1.38 1.40
    (2) 1.34 1.30 1.28 1.20 1.19 1.13 1.24
    (3) 1.27 1.06 1.22 1.10 1.14 1.08 1.15
  • Table 3   The STD values of IURE estimation errors (unit: m)
    Type Method NNOR GAMG JFNG KRGG NTUS PTGG Total
    GEO (1) 0.96 1.04 0.95 0.73 0.35 0.80 0.80
    (2) 0.88 0.96 0.69 0.71 0.35 0.58 0.70
    (3) 0.77 0.49 0.56 0.52 0.26 0.46 0.51
    IGSO (1) 1.55 1.10 1.12 0.69 0.47 1.08 1.00
    (2) 1.35 0.82 0.83 0.62 0.47 0.66 0.79
    (3) 1.25 0.55 0.72 0.47 0.32 0.39 0.62
    MEO (1) 1.41 1.25 1.24 0.71 0.46 0.97 1.01
    (2) 0.98 0.68 0.83 0.63 0.46 0.46 0.67
    (3) 0.83 0.38 0.73 0.44 0.36 0.36 0.52
    AllSat (1) 1.30 1.12 1.09 0.71 0.42 0.95 0.93
    (2) 1.07 0.82 0.78 0.65 0.42 0.57 0.72
    (3) 0.96 0.48 0.67 0.47 0.31 0.41 0.55

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号