logo

Chinese Science Bulletin, Volume 60 , Issue 33 : 3230-3238(2015) https://doi.org/10.1360/N972015-00950

Particle size effect and structure-function relationship of Ni-based steam reforming catalysts

More info
  • ReceivedAug 19, 2015
  • AcceptedSep 30, 2015
  • PublishedNov 20, 2015

Abstract

This paper describes the structure-function relationship between the particle size and the activity and stability of Ni based steam reforming catalysts. Based on a modified Stöber method, the particle size of Ni@SiO2 core-shell catalysts can be finely controlled. By exploring Ni@SiO2 core-shell catalysts with different Ni particle sizes, it is found that the turnover frequency (TOF) of ethanol increase with increasing Ni particle size, reaching a maximum after Ni particles are larger than 30 nm. The particle size of Ni also affects the stability of the catalyst. With larger Ni particle size, a more pronounced coking is observed, jeopardizing the stability of the catalyst. Our study shows that an appropriate Ni particle size is critical to the activity and stability of steam reforming catalysts.


Supplement

补充材料

图S1 Ni@SiO2催化剂N2吸附等温线

图S2 Ni@SiO2催化剂孔分布曲线图

图S3 NiO@SiO2催化剂的TEM图

图S4 反应后Ni@SiO2催化剂的TEM图

图S5 Ni@SiO2催化剂TG, DTG曲线分析图

图S6 反应后Ni@SiO2催化剂拉曼光谱图

表S1 反应后Ni@SiO2催化剂物化性质

表S2 拉曼光谱分析表

本文以上补充材料见网络版csb.scichina.com. 补充材料为作者提供的原始数据, 作者对其学术质量和内容负责.


References

[1] Momirlan M, Veziroglu T N. Current status of hydrogen energy. Renew Sust Energ Rev, 2002, 6: 141-179. Google Scholar

[2] Davidson S D, Zhang H, Sun J, et al. Supported metal catalysts for alcohol/sugar alcohol steam reforming. Dalton Trans, 2014, 43: 11782. Google Scholar

[3] Zanchet D, Santos J B O, Damyanova S, et al. Toward understanding metal-catalyzed ethanol reforming. ACS Catal, 2015, 5: 3841-3863. Google Scholar

[4] Li S, Gong J. Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions. Chem Soc Rev, 2014, 43: 7245-7256. Google Scholar

[5] Lopez N. On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J Catal, 2004, 223: 232-235. Google Scholar

[6] Bezemer G L, Bitter J H, Kuipers H P, et al. Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts. J Am Chem Soc, 2006, 128: 3956-3964. Google Scholar

[7] da Silva A L M, den Breejen J P, Mattos L V, et al. Cobalt particle size effects on catalytic performance for ethanol steam reform- ing—Smaller is better. J Catal, 2014, 318: 67-74. Google Scholar

[8] Kim J H, Suh D J, Park T J, et al. Effect of metal particle size on coking during CO2 reforming of CH4 over Ni-alumina aerogel catalysts. Appl Catal A, 2000, 197: 191-200. Google Scholar

[9] Frusteri F, Freni S, Chiodo V, et al. Steam reforming of bio-ethanol on alkali-doped Ni/MgO catalysts: Hydrogen production for MC fuel cell. Appl Catal A, 2004, 270: 1-7. Google Scholar

[10] Baudouin D, Rodemerck U, Krumeich F, et al. Particle size effect in the low temperature reforming of methane by carbon dioxide on sil- ica-supported Ni nanoparticles. J Catal, 2013, 297: 27-34. Google Scholar

[11] Fajardo H V, Probst L F D. Production of hydrogen by steam reforming of ethanol over Ni/Al2O3 spherical catalysts. Appl Catal A, 2006, 306: 134-141. Google Scholar

[12] Bengaard H S, Nørskov J K, Sehested J, et al. Steam reforming and graphite formation on Ni catalysts. J Catal, 2002, 209: 365-384. Google Scholar

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号