References
[1]
Kosaka
Y,
Xie
S P.
Recent global-warming hiatus tied to equatorial Pacific surface cooling.
Nature,
2013, 501: 403-407
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Recent global-warming hiatus tied to equatorial Pacific surface cooling&author=Kosaka Y&author=Xie S P&publication_year=2013&journal=Nature&volume=501&pages=403-407
[2]
Cohen
J,
Screen
J A,
Furtado
J C, et al.
Recent Arctic amplification and extreme mid-latitude weather.
Nat Geosci,
2014, 7: 627-637
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Recent Arctic amplification and extreme mid-latitude weather&author=Cohen J&author=Screen J A&author=Furtado J C&publication_year=2014&journal=Nat Geosci&volume=7&pages=627-637
[3]
Screen
J A,
Francis
J A.
Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability.
Nat Clim Change,
2016, 6: 856-860
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability&author=Screen J A&author=Francis J A&publication_year=2016&journal=Nat Clim Change&volume=6&pages=856-860
[4]
Zhao J P, Shi J X, Wang Z M, et al. Arctic amplification produced by sea ice retreat and its global climate effects (in Chinese). Adv Earth Sci, 2015, 30: 985–995 [赵进平, 史久新, 王召民, 等. 北极海冰减退引起的北极放大机理与全球气候效应. 地球科学进展, 2015, 30: 985–995].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhao J P, Shi J X, Wang Z M, et al. Arctic amplification produced by sea ice retreat and its global climate effects (in Chinese). Adv Earth Sci, 2015, 30: 985–995 [赵进平, 史久新, 王召民, 等. 北极海冰减退引起的北极放大机理与全球气候效应. 地球科学进展, 2015, 30: 985–995]&
[5]
Dee
D P,
Uppala
S M,
Simmons
A J, et al.
The ERA-Interim reanalysis: Configuration and performance of the data assimilation system.
QJR Meteorol Soc,
2011, 137: 553-597
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=The ERA-Interim reanalysis: Configuration and performance of the data assimilation system&author=Dee D P&author=Uppala S M&author=Simmons A J&publication_year=2011&journal=QJR Meteorol Soc&volume=137&pages=553-597
[6]
Comiso
J C,
Hall
D K.
Climate trends in the Arctic as observed from space.
WIREs Clim Change,
2014, 5: 389-409
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Climate trends in the Arctic as observed from space&author=Comiso J C&author=Hall D K&publication_year=2014&journal=WIREs Clim Change&volume=5&pages=389-409
[7]
Stroeve
J,
Holland
M M,
Meier
W, et al.
Arctic sea ice decline: Faster than forecast.
Geophys Res Lett,
2007, 34: L09501
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Arctic sea ice decline: Faster than forecast&author=Stroeve J&author=Holland M M&author=Meier W&publication_year=2007&journal=Geophys Res Lett&volume=34&pages=L09501
[8]
Ke C Q, Peng H T, Sun B, et al. Spatio-temporal variability of Arctic sea ice from 2002 to 2011 (in Chinese).J Remote Sens, 17: 452–466 [柯长青, 彭海涛, 孙波, 等. 2002年~2011年北极海冰时空变化分析. 遥感学报, 2013, 17: 452–466].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ke C Q, Peng H T, Sun B, et al. Spatio-temporal variability of Arctic sea ice from 2002 to 2011 (in Chinese).J Remote Sens, 17: 452–466 [柯长青, 彭海涛, 孙波, 等. 2002年~2011年北极海冰时空变化分析. 遥感学报, 2013, 17: 452–466]&
[9]
Kerr
R A.
GLOBAL WARMING: Arctic Summer Sea Ice Could Vanish Soon But Not Suddenly.
Science,
2009, 323: 1655
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=GLOBAL WARMING: Arctic Summer Sea Ice Could Vanish Soon But Not Suddenly&author=Kerr R A&publication_year=2009&journal=Science&volume=323&pages=1655
[10]
Christensen
T R.
Climate science: Understand Arctic methane variability.
Nature,
2014, 509: 279-281
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Climate science: Understand Arctic methane variability&author=Christensen T R&publication_year=2014&journal=Nature&volume=509&pages=279-281
[11]
Moore
G W K,
Våge
K,
Pickart
R S, et al.
Decreasing intensity of open-ocean convection in the Greenland and Iceland seas.
Nat Clim Change,
2015, 5: 877-882
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Decreasing intensity of open-ocean convection in the Greenland and Iceland seas&author=Moore G W K&author=Våge K&author=Pickart R S&publication_year=2015&journal=Nat Clim Change&volume=5&pages=877-882
[12]
Post
E,
Bhatt
U S,
Bitz
C M, et al.
Ecological consequences of sea-ice decline.
Science,
2013, 341: 519-524
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ecological consequences of sea-ice decline&author=Post E&author=Bhatt U S&author=Bitz C M&publication_year=2013&journal=Science&volume=341&pages=519-524
[13]
Brodzik
M J,
Billingsley
B,
Haran
T, et al.
EASE-Grid 2.0: Incremental but significant improvements for Earth-gridded data sets.
IJGI,
2012, 1: 32-45
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=EASE-Grid 2.0: Incremental but significant improvements for Earth-gridded data sets&author=Brodzik M J&author=Billingsley B&author=Haran T&publication_year=2012&journal=IJGI&volume=1&pages=32-45
[14]
Cavaieri D, Parkinson C, Gloersen P, et al. Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data. Boulder, Colorado USA: NASA DAAC at the National Snow and Ice Data Center, 1996.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cavaieri D, Parkinson C, Gloersen P, et al. Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data. Boulder, Colorado USA: NASA DAAC at the National Snow and Ice Data Center, 1996&
[15]
Gramling
C.
The Siberian snow connection.
Science,
2015, 347: 821
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The Siberian snow connection&author=Gramling C&publication_year=2015&journal=Science&volume=347&pages=821
[16]
Shepherd
T G.
Effects of a warming Arctic.
Science,
2016, 353: 989-990
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Effects of a warming Arctic&author=Shepherd T G&publication_year=2016&journal=Science&volume=353&pages=989-990
[17]
He
S,
Wang
H.
Linkage between the East Asian January temperature extremes and the preceding Arctic Oscillation.
Int J Climatol,
2015, 36: 1026-1032
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Linkage between the East Asian January temperature extremes and the preceding Arctic Oscillation&author=He S&author=Wang H&publication_year=2015&journal=Int J Climatol&volume=36&pages=1026-1032
[18]
Overland
J E,
Wood
K R,
Wang
M.
Warm Arctic—cold continents: Climate impacts of the newly open Arctic Sea.
Polar Res,
2011, 30: 15787
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Warm Arctic—cold continents: Climate impacts of the newly open Arctic Sea&author=Overland J E&author=Wood K R&author=Wang M&publication_year=2011&journal=Polar Res&volume=30&pages=15787
[19]
Cohen
J.
An observational analysis: Tropical relative to Arctic influence on midlatitude weather in the era of Arctic amplification.
Geophys Res Lett,
2016, 43: 5287-5294
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=An observational analysis: Tropical relative to Arctic influence on midlatitude weather in the era of Arctic amplification&author=Cohen J&publication_year=2016&journal=Geophys Res Lett&volume=43&pages=5287-5294
[20]
Cohen
J,
Pfeiffer
K,
Francis
J A.
Warm Arctic episodes linked with increased frequency of extreme winter weather in the United States.
Nat Commun,
2018, 9: 869
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Warm Arctic episodes linked with increased frequency of extreme winter weather in the United States&author=Cohen J&author=Pfeiffer K&author=Francis J A&publication_year=2018&journal=Nat Commun&volume=9&pages=869
[21]
Francis A J, Vavrus S, Cohen J. Amplified Arctic warming and mid-latitude weather: New perspectives on emerging connections. WIREs Clim Change, 2017, e474.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Francis A J, Vavrus S, Cohen J. Amplified Arctic warming and mid-latitude weather: New perspectives on emerging connections. WIREs Clim Change, 2017, e474&
[22]
Trenberth
K E,
Fasullo
J T.
Changes in the flow of energy through the Earth's climate system.
metz,
2009, 18: 369-377
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Changes in the flow of energy through the Earth's climate system&author=Trenberth K E&author=Fasullo J T&publication_year=2009&journal=metz&volume=18&pages=369-377
[23]
Smedsrud
L H,
Esau
I,
Ingvaldsen
R B, et al.
The role of the Barents Sea in the Arctic climate system.
Rev Geophys,
2013, 51: 415-449
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=The role of the Barents Sea in the Arctic climate system&author=Smedsrud L H&author=Esau I&author=Ingvaldsen R B&publication_year=2013&journal=Rev Geophys&volume=51&pages=415-449
[24]
Spielhagen
R F,
Werner
K,
Sørensen
S A, et al.
Enhanced modern heat transfer to the Arctic by warm Atlantic water.
Science,
2011, 331: 450-453
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Enhanced modern heat transfer to the Arctic by warm Atlantic water&author=Spielhagen R F&author=Werner K&author=Sørensen S A&publication_year=2011&journal=Science&volume=331&pages=450-453
[25]
Zhang
R.
Mechanisms for low-frequency variability of summer Arctic sea ice extent.
Proc Natl Acad Sci USA,
2015, 112: 4570-4575
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mechanisms for low-frequency variability of summer Arctic sea ice extent&author=Zhang R&publication_year=2015&journal=Proc Natl Acad Sci USA&volume=112&pages=4570-4575
[26]
Binder
H,
Boettcher
M,
Grams
C M, et al.
Exceptional air mass transport and dynamical drivers of an extreme wintertime Arctic warm event.
Geophys Res Lett,
2017, 44: 12,028-12,036
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Exceptional air mass transport and dynamical drivers of an extreme wintertime Arctic warm event&author=Binder H&author=Boettcher M&author=Grams C M&publication_year=2017&journal=Geophys Res Lett&volume=44&pages=12,028-12,036
[27]
Wendisch M, Brückner M, Burrows P J, et al. Understanding causes and effects of rapid warming in the Arctic. Eos, 2017, 98.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wendisch M, Brückner M, Burrows P J, et al. Understanding causes and effects of rapid warming in the Arctic. Eos, 2017, 98&
[28]
Bernstein L, Bosch P, Canziani O, et al. Climate change 2007: Synthesis report: An assessment of the intergovernmental panel on climate change. IPCC, 2008.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bernstein L, Bosch P, Canziani O, et al. Climate change 2007: Synthesis report: An assessment of the intergovernmental panel on climate change. IPCC, 2008&
[29]
Flanner M G, Shell K M, Barlage M, et al. Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008. Nat Geosci, 2011, 4: 151–155.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Flanner M G, Shell K M, Barlage M, et al. Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008. Nat Geosci, 2011, 4: 151–155&
[30]
Comiso J C, Parkinson C L, Gersten R, et al. Accelerated decline in the Arctic sea ice cover. Geophys Res Lett, 2008, 35: L01703.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Comiso J C, Parkinson C L, Gersten R, et al. Accelerated decline in the Arctic sea ice cover. Geophys Res Lett, 2008, 35: L01703&
[31]
Parkinson
C L,
Cavalieri
D J.
Antarctic sea ice variability and trends, 1979–2010.
Cryosphere,
1979, 6: 871-880
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Antarctic sea ice variability and trends, 1979–2010&author=Parkinson C L&author=Cavalieri D J&publication_year=1979&journal=Cryosphere&volume=6&pages=871-880
[32]
Markus
T,
Stroeve
J C,
Miller
J.
Recent changes in Arctic sea ice melt onset, freezeup, and melt season length.
J Geophys Res,
2009, 114: C12024
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Recent changes in Arctic sea ice melt onset, freezeup, and melt season length&author=Markus T&author=Stroeve J C&author=Miller J&publication_year=2009&journal=J Geophys Res&volume=114&pages=C12024
[33]
Stroeve
J C,
Markus
T,
Boisvert
L, et al.
Changes in Arctic melt season and implications for sea ice loss.
Geophys Res Lett,
2014, 41: 1216-1225
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Changes in Arctic melt season and implications for sea ice loss&author=Stroeve J C&author=Markus T&author=Boisvert L&publication_year=2014&journal=Geophys Res Lett&volume=41&pages=1216-1225
[34]
Kwok R, Rothrock D A. Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophys Res Lett, 2009, 36: L15501.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kwok R, Rothrock D A. Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophys Res Lett, 2009, 36: L15501&
[35]
Maslanik
J A,
Fowler
C,
Stroeve
J, et al.
A younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea-ice loss.
Geophys Res Lett,
2007, 34: L24501
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea-ice loss&author=Maslanik J A&author=Fowler C&author=Stroeve J&publication_year=2007&journal=Geophys Res Lett&volume=34&pages=L24501
[36]
Riihelä
A,
Manninen
T,
Laine
V.
Observed changes in the albedo of the Arctic sea-ice zone for the period 1982–2009.
Nat Clim Change,
1982, 3: 895-898
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Observed changes in the albedo of the Arctic sea-ice zone for the period 1982–2009&author=Riihelä A&author=Manninen T&author=Laine V&publication_year=1982&journal=Nat Clim Change&volume=3&pages=895-898
[37]
Colman
R A.
Surface albedo feedbacks from climate variability and change.
J Geophys Res Atmos,
2013, 118: 2827-2834
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Surface albedo feedbacks from climate variability and change&author=Colman R A&publication_year=2013&journal=J Geophys Res Atmos&volume=118&pages=2827-2834
[38]
Dessler A. Observations of climate feedbacks over 2000–2010 and comparisons to climate models. J Clim, 2013, 26: 333–342.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dessler A. Observations of climate feedbacks over 2000–2010 and comparisons to climate models. J Clim, 2013, 26: 333–342&
[39]
Dessler A E. A determination of the cloud feedback from climate variations over the past decade. Science, 2010, 330: 1523–1527.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dessler A E. A determination of the cloud feedback from climate variations over the past decade. Science, 2010, 330: 1523–1527&
[40]
Gordon
N D,
Jonko
A K,
Forster
P M, et al.
An observationally based constraint on the water-vapor feedback.
J Geophys Res Atmos,
2013, 118: 12,435-12,443
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=An observationally based constraint on the water-vapor feedback&author=Gordon N D&author=Jonko A K&author=Forster P M&publication_year=2013&journal=J Geophys Res Atmos&volume=118&pages=12,435-12,443
[41]
Zelinka
M D,
Hartmann
D L.
Climate feedbacks and their implications for poleward energy flux changes in a warming climate.
J Clim,
2012, 25: 608-624
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Climate feedbacks and their implications for poleward energy flux changes in a warming climate&author=Zelinka M D&author=Hartmann D L&publication_year=2012&journal=J Clim&volume=25&pages=608-624
[42]
Qu
X,
Hall
A.
Assessing snow albedo feedback in simulated climate change.
J Clim,
2006, 19: 2617-2630
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Assessing snow albedo feedback in simulated climate change&author=Qu X&author=Hall A&publication_year=2006&journal=J Clim&volume=19&pages=2617-2630
[43]
Donohoe
A,
Battisti
D S.
Atmospheric and surface contributions to planetary albedo.
J Clim,
2011, 24: 4402-4418
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Atmospheric and surface contributions to planetary albedo&author=Donohoe A&author=Battisti D S&publication_year=2011&journal=J Clim&volume=24&pages=4402-4418
[44]
Shell
K M,
Kiehl
J T,
Shields
C A.
Using the radiative kernel technique to calculate climate feedbacks in NCAR's Community Atmospheric Model.
J Clim,
2008, 21: 2269-2282
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Using the radiative kernel technique to calculate climate feedbacks in NCAR's Community Atmospheric Model&author=Shell K M&author=Kiehl J T&author=Shields C A&publication_year=2008&journal=J Clim&volume=21&pages=2269-2282
[45]
Soden
B J,
Held
I M,
Colman
R, et al.
Quantifying climate feedbacks using radiative kernels.
J Clim,
2008, 21: 3504-3520
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Quantifying climate feedbacks using radiative kernels&author=Soden B J&author=Held I M&author=Colman R&publication_year=2008&journal=J Clim&volume=21&pages=3504-3520
[46]
Qu
X,
Hall
A.
On the persistent spread in snow-albedo feedback.
Clim Dyn,
2013, 42: 69-81
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=On the persistent spread in snow-albedo feedback&author=Qu X&author=Hall A&publication_year=2013&journal=Clim Dyn&volume=42&pages=69-81
[47]
Pistone
K,
Eisenman
I,
Ramanathan
V.
Observational determination of albedo decrease caused by vanishing Arctic sea ice.
Proc Natl Acad Sci USA,
2014, 111: 3322-3326
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Observational determination of albedo decrease caused by vanishing Arctic sea ice&author=Pistone K&author=Eisenman I&author=Ramanathan V&publication_year=2014&journal=Proc Natl Acad Sci USA&volume=111&pages=3322-3326
[48]
Cao Y F, Liang S L, Chen X N, et al. Assessment of sea-ice albedo radiative forcing and feedback over the Northern Hemisphere from 1982 to 2009 using satellite and reanalysis data. J Clim, 2015, 28: 1248–1259.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cao Y F, Liang S L, Chen X N, et al. Assessment of sea-ice albedo radiative forcing and feedback over the Northern Hemisphere from 1982 to 2009 using satellite and reanalysis data. J Clim, 2015, 28: 1248–1259&
[49]
Flato G, Marotzke J, Abiodun B, et al. Evaluation of climate models. Climate Change 2013: The physical science basis. In: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Flato G, Marotzke J, Abiodun B, et al. Evaluation of climate models. Climate Change 2013: The physical science basis. In: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013&
[50]
Cao Y F, Liang S L, He T, et al. Evaluation of four reanalysis surface albedo data sets in Arctic using a satellite product. IEEE Geosci Remote Sens, 2016, 13: 384–389.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cao Y F, Liang S L, He T, et al. Evaluation of four reanalysis surface albedo data sets in Arctic using a satellite product. IEEE Geosci Remote Sens, 2016, 13: 384–389&
[51]
Crook
J A,
Forster
P M,
Stuber
N.
Spatial patterns of modeled climate feedback and contributions to temperature response and polar amplification.
J Clim,
2011, 24: 3575-3592
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Spatial patterns of modeled climate feedback and contributions to temperature response and polar amplification&author=Crook J A&author=Forster P M&author=Stuber N&publication_year=2011&journal=J Clim&volume=24&pages=3575-3592
[52]
Screen
J A,
Simmonds
I.
The central role of diminishing sea ice in recent Arctic temperature amplification.
Nature,
2010, 464: 1334-1337
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=The central role of diminishing sea ice in recent Arctic temperature amplification&author=Screen J A&author=Simmonds I&publication_year=2010&journal=Nature&volume=464&pages=1334-1337
[53]
Serreze
M C,
Barrett
A P,
Stroeve
J C, et al.
The emergence of surface-based Arctic amplification.
Cryosphere,
2009, 3: 11-19
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The emergence of surface-based Arctic amplification&author=Serreze M C&author=Barrett A P&author=Stroeve J C&publication_year=2009&journal=Cryosphere&volume=3&pages=11-19
[54]
Taylor
P C,
Cai
M,
Hu
A, et al.
A decomposition of feedback contributions to polar warming amplification.
J Clim,
2013, 26: 7023-7043
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A decomposition of feedback contributions to polar warming amplification&author=Taylor P C&author=Cai M&author=Hu A&publication_year=2013&journal=J Clim&volume=26&pages=7023-7043
[55]
Bintanja
R,
Graversen
R G,
Hazeleger
W.
Arctic winter warming amplified by the thermal inversion and consequent low infrared cooling to space.
Nat Geosci,
2011, 4: 758-761
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Arctic winter warming amplified by the thermal inversion and consequent low infrared cooling to space&author=Bintanja R&author=Graversen R G&author=Hazeleger W&publication_year=2011&journal=Nat Geosci&volume=4&pages=758-761
[56]
Pithan
F,
Mauritsen
T.
Arctic amplification dominated by temperature feedbacks in contemporary climate models.
Nat Geosci,
2014, 7: 181-184
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Arctic amplification dominated by temperature feedbacks in contemporary climate models&author=Pithan F&author=Mauritsen T&publication_year=2014&journal=Nat Geosci&volume=7&pages=181-184
[57]
Graversen
R G,
Wang
M.
Polar amplification in a coupled climate model with locked albedo.
Clim Dyn,
2009, 33: 629-643
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Polar amplification in a coupled climate model with locked albedo&author=Graversen R G&author=Wang M&publication_year=2009&journal=Clim Dyn&volume=33&pages=629-643
[58]
Winton M. Amplified Arctic climate change: What does surface albedo feedback have to do with it? Geophys Res Lett, 2006, 33: L03701.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Winton M. Amplified Arctic climate change: What does surface albedo feedback have to do with it? Geophys Res Lett, 2006, 33: L03701&
[59]
Liu Y, Key J R. Less winter cloud aids summer 2013 Arctic sea ice return from 2012 minimum. Environ Res Lett, 2014, 9: 044002.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Liu Y, Key J R. Less winter cloud aids summer 2013 Arctic sea ice return from 2012 minimum. Environ Res Lett, 2014, 9: 044002&
[60]
Cui H Y, Qiao F L, Shu Q. Reasons for the increase minimum Arctic sea ice extent in 2013 compared with 2012 (in Chinese). Acta Oceanol Sin, 2015, 37: 23–32 [崔红艳, 乔方利, 舒启. 2013年北极最小海冰范围比2012年增加的原因分析. 海洋学报, 2015, 37: 23–32].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cui H Y, Qiao F L, Shu Q. Reasons for the increase minimum Arctic sea ice extent in 2013 compared with 2012 (in Chinese). Acta Oceanol Sin, 2015, 37: 23–32 [崔红艳, 乔方利, 舒启. 2013年北极最小海冰范围比2012年增加的原因分析. 海洋学报, 2015, 37: 23–32]&
[61]
Bony S, Colman R, Kattsov V M, et al. How well do we understand and evaluate climate change feedback processes? J Clim, 2006, 19: 3445–3482.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bony S, Colman R, Kattsov V M, et al. How well do we understand and evaluate climate change feedback processes? J Clim, 2006, 19: 3445–3482&
[62]
Serreze
M C,
Schnell
R C,
Kahl
J D.
Low-level temperature inversions of the Eurasian Arctic and comparisons with Soviet drifting station data.
J Clim,
1992, 5: 615-629
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Low-level temperature inversions of the Eurasian Arctic and comparisons with Soviet drifting station data&author=Serreze M C&author=Schnell R C&author=Kahl J D&publication_year=1992&journal=J Clim&volume=5&pages=615-629
[63]
Pithan
F,
Mauritsen
T.
Comments on "Current GCMs' Unrealistic Negative Feedback in the Arctic".
J Clim,
2013, 26: 7783-7788
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Comments on "Current GCMs' Unrealistic Negative Feedback in the Arctic"&author=Pithan F&author=Mauritsen T&publication_year=2013&journal=J Clim&volume=26&pages=7783-7788
[64]
Graversen
R G,
Langen
P L,
Mauritsen
T.
Polar Amplification in CCSM4: Contributions from the Lapse Rate and Surface Albedo Feedbacks.
J Clim,
2014, 27: 4433-4450
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Polar Amplification in CCSM4: Contributions from the Lapse Rate and Surface Albedo Feedbacks&author=Graversen R G&author=Langen P L&author=Mauritsen T&publication_year=2014&journal=J Clim&volume=27&pages=4433-4450
[65]
Cronin
T W,
Tziperman
E.
Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming.
Proc Natl Acad Sci USA,
2015, 112: 11490-11495
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming&author=Cronin T W&author=Tziperman E&publication_year=2015&journal=Proc Natl Acad Sci USA&volume=112&pages=11490-11495
[66]
Joshi
M,
Shine
K,
Ponater
M, et al.
A comparison of climate response to different radiative forcings in three general circulation models: Towards an improved metric of climate change.
Clim Dyn,
2003, 20: 843-854
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A comparison of climate response to different radiative forcings in three general circulation models: Towards an improved metric of climate change&author=Joshi M&author=Shine K&author=Ponater M&publication_year=2003&journal=Clim Dyn&volume=20&pages=843-854
[67]
Boisvert
L N,
Stroeve
J C.
The Arctic is becoming warmer and wetter as revealed by the Atmospheric Infrared Sounder.
Geophys Res Lett,
2015, 42: 4439-4446
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=The Arctic is becoming warmer and wetter as revealed by the Atmospheric Infrared Sounder&author=Boisvert L N&author=Stroeve J C&publication_year=2015&journal=Geophys Res Lett&volume=42&pages=4439-4446
[68]
Burt M A, Randall D A, Branson M D. Dark warming. J Clim, 2015, 29: 705–719.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Burt M A, Randall D A, Branson M D. Dark warming. J Clim, 2015, 29: 705–719&
[69]
Cao
Y,
Liang
S,
Chen
X, et al.
Enhanced wintertime greenhouse effect reinforcing Arctic amplification and initial sea-ice melting.
Sci Rep,
2017, 7: 8462
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Enhanced wintertime greenhouse effect reinforcing Arctic amplification and initial sea-ice melting&author=Cao Y&author=Liang S&author=Chen X&publication_year=2017&journal=Sci Rep&volume=7&pages=8462
[70]
Kapsch
M L,
Graversen
R G,
Tjernström
M.
Springtime atmospheric energy transport and the control of Arctic summer sea-ice extent.
Nat Clim Change,
2013, 3: 744-748
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Springtime atmospheric energy transport and the control of Arctic summer sea-ice extent&author=Kapsch M L&author=Graversen R G&author=Tjernström M&publication_year=2013&journal=Nat Clim Change&volume=3&pages=744-748
[71]
Tilling
R L,
Ridout
A,
Shepherd
A, et al.
Increased Arctic sea ice volume after anomalously low melting in 2013.
Nat Geosci,
2013, 8: 643-646
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Increased Arctic sea ice volume after anomalously low melting in 2013&author=Tilling R L&author=Ridout A&author=Shepherd A&publication_year=2013&journal=Nat Geosci&volume=8&pages=643-646
[72]
Ghatak
D,
Miller
J.
Implications for Arctic amplification of changes in the strength of the water vapor feedback.
J Geophys Res Atmos,
2013, 118: 7569-7578
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Implications for Arctic amplification of changes in the strength of the water vapor feedback&author=Ghatak D&author=Miller J&publication_year=2013&journal=J Geophys Res Atmos&volume=118&pages=7569-7578
[73]
Cullather
R I,
Lim
Y K,
Boisvert
L N, et al.
Analysis of the warmest Arctic winter, 2015-2016.
Geophys Res Lett,
2015, 43: 10,808-10,816
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Analysis of the warmest Arctic winter, 2015-2016&author=Cullather R I&author=Lim Y K&author=Boisvert L N&publication_year=2015&journal=Geophys Res Lett&volume=43&pages=10,808-10,816
[74]
Dong
X,
Zib
B J,
Xi
B, et al.
Critical mechanisms for the formation of extreme Arctic sea-ice extent in the summers of 2007 and 1996.
Clim Dyn,
1996, 43: 53-70
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Critical mechanisms for the formation of extreme Arctic sea-ice extent in the summers of 2007 and 1996&author=Dong X&author=Zib B J&author=Xi B&publication_year=1996&journal=Clim Dyn&volume=43&pages=53-70
[75]
Gimeno
L,
Vázquez
M,
Nieto
R, et al.
Short Communication: Atmospheric moisture transport, the bridge between ocean evaporation and Arctic ice melting.
Earth Syst Dynam Discuss,
2015, 6: 1033-1045
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Short Communication: Atmospheric moisture transport, the bridge between ocean evaporation and Arctic ice melting&author=Gimeno L&author=Vázquez M&author=Nieto R&publication_year=2015&journal=Earth Syst Dynam Discuss&volume=6&pages=1033-1045
[76]
Graversen
R G,
Burtu
M.
Arctic amplification enhanced by latent energy transport of atmospheric planetary waves.
QJR Meteorol Soc,
2016, 142: 2046-2054
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Arctic amplification enhanced by latent energy transport of atmospheric planetary waves&author=Graversen R G&author=Burtu M&publication_year=2016&journal=QJR Meteorol Soc&volume=142&pages=2046-2054
[77]
Woods
C,
Caballero
R.
The role of moist intrusions in winter Arctic warming and sea ice decline.
J Clim,
2016, 29: 4473-4485
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The role of moist intrusions in winter Arctic warming and sea ice decline&author=Woods C&author=Caballero R&publication_year=2016&journal=J Clim&volume=29&pages=4473-4485
[78]
Ding
Q,
Schweiger
A,
L'Heureux
M, et al.
Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice.
Nat Clim Change,
2017, 7: 289-295
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice&author=Ding Q&author=Schweiger A&author=L'Heureux M&publication_year=2017&journal=Nat Clim Change&volume=7&pages=289-295
[79]
Intrieri
J M,
Fairall
C W,
Shupe
M D, et al.
An annual cycle of Arctic surface cloud forcing at Sheba.
J Geophys Res,
2002, 107: 8039
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=An annual cycle of Arctic surface cloud forcing at Sheba&author=Intrieri J M&author=Fairall C W&author=Shupe M D&publication_year=2002&journal=J Geophys Res&volume=107&pages=8039
[80]
Vavrus
S J,
Bhatt
U S,
Alexeev
V A.
Factors influencing simulated changes in future Arctic cloudiness.
J Clim,
2011, 24: 4817-4830
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Factors influencing simulated changes in future Arctic cloudiness&author=Vavrus S J&author=Bhatt U S&author=Alexeev V A&publication_year=2011&journal=J Clim&volume=24&pages=4817-4830
[81]
Wu D L, Lee J N. Arctic low cloud changes as observed by MISR and CALIOP: Implication for the enhanced autumnal warming and sea ice loss. J Geophys Res Atmos, 2012, 117: D07107.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wu D L, Lee J N. Arctic low cloud changes as observed by MISR and CALIOP: Implication for the enhanced autumnal warming and sea ice loss. J Geophys Res Atmos, 2012, 117: D07107&
[82]
Flanner
M G.
Arctic climate sensitivity to local black carbon.
J Geophys Res Atmos,
2013, 118: 1840-1851
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Arctic climate sensitivity to local black carbon&author=Flanner M G&publication_year=2013&journal=J Geophys Res Atmos&volume=118&pages=1840-1851
[83]
Garrett
T J,
Zhao
C.
Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes.
Nature,
2006, 440: 787-789
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes&author=Garrett T J&author=Zhao C&publication_year=2006&journal=Nature&volume=440&pages=787-789
[84]
Schiermeier
Q.
Atlantic current strength declines.
Nature,
2014, 509: 270-271
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Atlantic current strength declines&author=Schiermeier Q&publication_year=2014&journal=Nature&volume=509&pages=270-271
[85]
Bryden
H L,
Longworth
H R,
Cunningham
S A.
Slowing of the Atlantic meridional overturning circulation at 25° N.
Nature,
2005, 438: 655-657
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Slowing of the Atlantic meridional overturning circulation at 25° N&author=Bryden H L&author=Longworth H R&author=Cunningham S A&publication_year=2005&journal=Nature&volume=438&pages=655-657
[86]
Smeed
D A,
McCarthy
G D,
Cunningham
S A, et al.
Observed decline of the Atlantic meridional overturning circulation 2004–2012.
Ocean Sci,
2004, 10: 29-38
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Observed decline of the Atlantic meridional overturning circulation 2004–2012&author=Smeed D A&author=McCarthy G D&author=Cunningham S A&publication_year=2004&journal=Ocean Sci&volume=10&pages=29-38
[87]
Jackson
L C,
Peterson
K A,
Roberts
C D, et al.
Recent slowing of Atlantic overturning circulation as a recovery from earlier strengthening.
Nat Geosci,
2016, 9: 518-522
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Recent slowing of Atlantic overturning circulation as a recovery from earlier strengthening&author=Jackson L C&author=Peterson K A&author=Roberts C D&publication_year=2016&journal=Nat Geosci&volume=9&pages=518-522
[88]
Koenigk
T,
Brodeau
L.
Ocean heat transport into the Arctic in the twentieth and twenty-first century in EC-earth.
Clim Dyn,
2013, 42: 3101-3120
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ocean heat transport into the Arctic in the twentieth and twenty-first century in EC-earth&author=Koenigk T&author=Brodeau L&publication_year=2013&journal=Clim Dyn&volume=42&pages=3101-3120
[89]
Rahmstorf
S,
Box
J E,
Feulner
G, et al.
Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation.
Nat Clim Change,
2015, 5: 475-480
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation&author=Rahmstorf S&author=Box J E&author=Feulner G&publication_year=2015&journal=Nat Clim Change&volume=5&pages=475-480
[90]
Fasullo J T, Trenberth K E. The annual cycle of the energy budget. Part ii: Meridional structures and poleward transports. J Clim, 2008, 21: 2313–2325.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fasullo J T, Trenberth K E. The annual cycle of the energy budget. Part ii: Meridional structures and poleward transports. J Clim, 2008, 21: 2313–2325&
[91]
Trenberth
K E,
Fasullo
J T.
Atlantic meridional heat transports computed from balancing Earth's energy locally.
Geophys Res Lett,
2017, 44: 1919-1927
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Atlantic meridional heat transports computed from balancing Earth's energy locally&author=Trenberth K E&author=Fasullo J T&publication_year=2017&journal=Geophys Res Lett&volume=44&pages=1919-1927
[92]
Acosta Navarro
J C,
Varma
V,
Riipinen
I, et al.
Amplification of Arctic warming by past air pollution reductions in Europe.
Nat Geosci,
2016, 9: 277-281
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Amplification of Arctic warming by past air pollution reductions in Europe&author=Acosta Navarro J C&author=Varma V&author=Riipinen I&publication_year=2016&journal=Nat Geosci&volume=9&pages=277-281
[93]
Hansen
J,
Nazarenko
L.
Soot climate forcing via snow and ice albedos.
Proc Natl Acad Sci USA,
2004, 101: 423-428
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Soot climate forcing via snow and ice albedos&author=Hansen J&author=Nazarenko L&publication_year=2004&journal=Proc Natl Acad Sci USA&volume=101&pages=423-428
[94]
Gonsamo
A,
Chen
J M.
Circumpolar vegetation dynamics product for global change study.
Remote Sens Environ,
2016, 182: 13-26
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Circumpolar vegetation dynamics product for global change study&author=Gonsamo A&author=Chen J M&publication_year=2016&journal=Remote Sens Environ&volume=182&pages=13-26
[95]
Koenigk
T,
Devasthale
A,
Karlsson
K G.
Summer Arctic sea ice albedo in CMIP5 models.
Atmos Chem Phys,
2014, 14: 1987-1998
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Summer Arctic sea ice albedo in CMIP5 models&author=Koenigk T&author=Devasthale A&author=Karlsson K G&publication_year=2014&journal=Atmos Chem Phys&volume=14&pages=1987-1998
[96]
Sorteberg
A,
Kattsov
V,
Walsh
J E, et al.
The Arctic surface energy budget as simulated with the IPCC AR4 AOGCMs.
Clim Dyn,
2007, 29: 131-156
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=The Arctic surface energy budget as simulated with the IPCC AR4 AOGCMs&author=Sorteberg A&author=Kattsov V&author=Walsh J E&publication_year=2007&journal=Clim Dyn&volume=29&pages=131-156
[97]
Shu
Q,
Song
Z,
Qiao
F.
Assessment of sea ice simulations in the CMIP5 models.
Cryosphere,
2014, 9: 399-409
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Assessment of sea ice simulations in the CMIP5 models&author=Shu Q&author=Song Z&author=Qiao F&publication_year=2014&journal=Cryosphere&volume=9&pages=399-409
[98]
Chung E S, Yeomans D, Soden B J. An assessment of climate feedback processes using satellite observations of clear-sky OLR. Geophys Res Lett, 2010, 37: L02702.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chung E S, Yeomans D, Soden B J. An assessment of climate feedback processes using satellite observations of clear-sky OLR. Geophys Res Lett, 2010, 37: L02702&
[99]
Singh
D,
Flanner
M G,
Perket
J.
The global land shortwave cryosphere radiative effect during the MODIS era.
Cryosphere,
2015, 9: 2057-2070
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=The global land shortwave cryosphere radiative effect during the MODIS era&author=Singh D&author=Flanner M G&author=Perket J&publication_year=2015&journal=Cryosphere&volume=9&pages=2057-2070
[100]
Lindsay
R,
Wensnahan
M,
Schweiger
A, et al.
Evaluation of Seven Different Atmospheric Reanalysis Products in the Arctic*.
J Clim,
2014, 27: 2588-2606
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Evaluation of Seven Different Atmospheric Reanalysis Products in the Arctic*&author=Lindsay R&author=Wensnahan M&author=Schweiger A&publication_year=2014&journal=J Clim&volume=27&pages=2588-2606
[101]
Chaudhuri
A H,
Ponte
R M,
Nguyen
A T.
A Comparison of Atmospheric Reanalysis Products for the Arctic Ocean and Implications for Uncertainties in Air–Sea Fluxes.
J Clim,
2014, 27: 5411-5421
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Comparison of Atmospheric Reanalysis Products for the Arctic Ocean and Implications for Uncertainties in Air–Sea Fluxes&author=Chaudhuri A H&author=Ponte R M&author=Nguyen A T&publication_year=2014&journal=J Clim&volume=27&pages=5411-5421
[102]
Wang
K,
Dickinson
R E.
Global atmospheric downward longwave radiation at the surface from ground-based observations, satellite retrievals, and reanalyses.
Rev Geophys,
2013, 51: 150-185
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Global atmospheric downward longwave radiation at the surface from ground-based observations, satellite retrievals, and reanalyses&author=Wang K&author=Dickinson R E&publication_year=2013&journal=Rev Geophys&volume=51&pages=150-185
[103]
Zhang
T,
Stackhouse Jr.
P W,
Gupta
S K, et al.
The validation of the GEWEX SRB surface longwave flux data products using BSRN measurements.
J Quantitative Spectr Radiative Transfer,
2015, 150: 134-147
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=The validation of the GEWEX SRB surface longwave flux data products using BSRN measurements&author=Zhang T&author=Stackhouse Jr. P W&author=Gupta S K&publication_year=2015&journal=J Quantitative Spectr Radiative Transfer&volume=150&pages=134-147
[104]
Liang S L, Tang S H, Zhang J, et al. Production of the global climate data records and application to climate studies (in Chinese). J Remote Sens, 2016, 6: 1491–1499 [梁顺林, 唐世浩, 张杰, 等. 全球气候数据集生成及气候变化应用研究. 遥感学报, 2016, 6: 1491–1499].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Liang S L, Tang S H, Zhang J, et al. Production of the global climate data records and application to climate studies (in Chinese). J Remote Sens, 2016, 6: 1491–1499 [梁顺林, 唐世浩, 张杰, 等. 全球气候数据集生成及气候变化应用研究. 遥感学报, 2016, 6: 1491–1499]&
[105]
Park
H S,
Lee
S,
Son
S W, et al.
The Impact of Poleward Moisture and Sensible Heat Flux on Arctic Winter Sea Ice Variability*.
J Clim,
2015, 28: 5030-5040
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=The Impact of Poleward Moisture and Sensible Heat Flux on Arctic Winter Sea Ice Variability*&author=Park H S&author=Lee S&author=Son S W&publication_year=2015&journal=J Clim&volume=28&pages=5030-5040