logo

SCIENTIA SINICA Chimica, Volume 50 , Issue 12 : 1781-1800(2020) https://doi.org/10.1360/SSC-2020-0127

Some thoughts about controllable assembly (II): catassembly in living organism

More info
  • ReceivedJul 11, 2020
  • AcceptedAug 27, 2020
  • PublishedNov 4, 2020

Abstract


Funded by

国家自然科学基金(91427304,21991130,21991131)


Acknowledgment

衷心感谢自然科学基金委的“催组装研究方法与理论基础”重大项目(21991130)、“可控分子自组装体系及其功能化”重大研究计划(91427304)的支持. 衷心感谢吴家睿、张希、刘鸣华、樊春海、李国红、梁好均、徐昕、高毅勤、杨海波、张文彬、昌增益、王梅祥、陈玲玲、李伟、陈萍、程俊等的有益讨论和建议.


References

[1] Lehn JM. Science, 2002, 295: 2400-2403 CrossRef PubMed ADS Google Scholar

[2] Lehn JM. Angew Chem Int Ed, 2013, 52: 2836-2850 CrossRef PubMed Google Scholar

[3] Shen JC, Zhang X. Sci & Tech Rev, 1994, 12: 6–8 (in Chinese) [沈家骢, 张希. 科技导报, 1994, 12: 6–8]. Google Scholar

[4] Shen JC, Zhang Xi. Chin Sci Bull, 2003, 48: 1477-1478 (in Chinese) CrossRef Google Scholar

[5] Lehn JM. Pure Appl Chem, 1978, 50: 871-892 CrossRef Google Scholar

[6] Lehn JM. Supramolecular Chemistry: Concepts and Perspectives. New York: Wiley, 1996. Google Scholar

[7] Zhou Y, Yan D. Chem Commun, 2009, : 1172-1188 CrossRef PubMed Google Scholar

[8] Kim HC, Park SM, Hinsberg WD. Chem Rev, 2010, 110: 146-177 CrossRef PubMed Google Scholar

[9] Mai Y, Eisenberg A. Chem Soc Rev, 2012, 41: 5969-5985 CrossRef PubMed Google Scholar

[10] Ulman A. Chem Rev, 1996, 96: 1533-1554 CrossRef PubMed Google Scholar

[11] Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM. Chem Rev, 2005, 105: 1103-1170 CrossRef PubMed Google Scholar

[12] Barth JV. Annu Rev Phys Chem, 2007, 58: 375-407 CrossRef PubMed ADS Google Scholar

[13] Whitesides GM, Grzybowski B. Science, 2002, 295: 2418-2421 CrossRef PubMed ADS Google Scholar

[14] Halley JD, Winkler DA. Complexity, 2008, 14: 10-17 CrossRef ADS Google Scholar

[15] Del Valle EMM. Process Biochem, 2004, 39: 1033-1046 CrossRef Google Scholar

[16] Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L. Angew Chem Int Ed, 2005, 44: 4844-4870 CrossRef PubMed Google Scholar

[17] Caltagirone C, Gale PA. Chem Soc Rev, 2009, 38: 520-563 CrossRef PubMed Google Scholar

[18] Hasenknopf B, Lehn JM, Kneisel BO, Baum G, Fenske D. Angew Chem Int Ed Engl, 1996, 35: 1838-1840 CrossRef Google Scholar

[19] Jones MR, Seeman NC, Mirkin CA. Science, 2015, 347: 1260901 CrossRef PubMed Google Scholar

[20] Aida T, Meijer EW, Stupp SI. Science, 2012, 335: 813-817 CrossRef PubMed ADS Google Scholar

[21] Brunsveld L, Folmer BJB, Meijer EW, Sijbesma RP. Chem Rev, 2001, 101: 4071-4098 CrossRef PubMed Google Scholar

[22] Hartgerink JD, Beniash E, Stupp SI. Science, 2001, 294: 1684-1688 CrossRef PubMed ADS Google Scholar

[23] De Greef TFA, Smulders MMJ, Wolffs M, Schenning APHJ, Sijbesma RP, Meijer EW. Chem Rev, 2009, : 5687-5754 CrossRef PubMed Google Scholar

[24] Tian J, Zhou TY, Zhang SC, Aloni S, Altoe MV, Xie SH, Wang H, Zhang DW, Zhao X, Liu Y, Li ZT. Nat Commun, 2014, 5: 5574 CrossRef PubMed ADS Google Scholar

[25] Tian J, Wang H, Zhang DW, Liu Y, Li ZT. Natl Sci Rev, 2017, 4: 426-436 CrossRef Google Scholar

[26] Yao W, Ma C, Ma H, Fu L, Lu S, Lv A, Cai S, Hang X, Singh M, Shi H, An Z, Huang W. Giant, 2020, 1: 100007 CrossRef Google Scholar

[27] Zheng J, Birktoft JJ, Chen Y, Wang T, Sha R, Constantinou PE, Ginell SL, Mao C, Seeman NC. Nature, 2009, 461: 74-77 CrossRef PubMed ADS Google Scholar

[28] Harata K. BCSJ, 1984, 57: 2596-2599 CrossRef Google Scholar

[29] Wang Y, Lin HX, Ding SY, Liu DY, Chen L, Lei ZC, Fan FR, Tian ZQ. Sci Sin-Chim, 2012, 42: 525-547 (in Chinese) CrossRef Google Scholar

[30] Wang Y, Lin HX, Chen L, Ding SY, Lei ZC, Liu DY, Cao XY, Liang HJ, Jiang YB, Tian ZQ. Chem Soc Rev, 2014, 43: 399-411 CrossRef PubMed Google Scholar

[31] Vantomme G, Meijer EW. Science, 2019, 363: 1396-1397 CrossRef PubMed ADS Google Scholar

[32] Tame JRH, Vallone B. Acta Crystlogr D Biol Crystlogr, 2000, 56: 805-811 CrossRef PubMed Google Scholar

[33] Schmidli C, Albiez S, Rima L, Righetto R, Mohammed I, Oliva P, Kovacik L, Stahlberg H, Braun T. Proc Natl Acad Sci USA, 2019, 116: 15007-15012 CrossRef PubMed Google Scholar

[34] Song F, Chen P, Sun D, Wang M, Dong L, Liang D, Xu RM, Zhu P, Li G. Science, 2014, 344: 376-380 CrossRef PubMed ADS Google Scholar

[35] Perlmutter JD, Hagan MF. Annu Rev Phys Chem, 2015, 66: 217-239 CrossRef PubMed ADS arXiv Google Scholar

[36] Hirokawa N, Noda Y, Tanaka Y, Niwa S. Nat Rev Mol Cell Biol, 2009, 10: 682-696 CrossRef PubMed Google Scholar

[37] Verhey KJ, Kaul N, Soppina V. Annu Rev Biophys, 2011, 40: 267-288 CrossRef PubMed Google Scholar

[38] Winkler WC, Breaker RR. Annu Rev Microbiol, 2005, 59: 487-517 CrossRef PubMed Google Scholar

[39] Serganov A, Nudler E. Cell, 2013, 152: 17-24 CrossRef PubMed Google Scholar

[40] Rothemund PWK. Nature, 2006, 440: 297-302 CrossRef PubMed ADS Google Scholar

[41] Pinheiro AV, Han D, Shih WM, Yan H. Nat Nanotech, 2011, 6: 763-772 CrossRef PubMed ADS Google Scholar

[42] King NP, Sheffler W, Sawaya MR, Vollmar BS, Sumida JP, André I, Gonen T, Yeates TO, Baker D. Science, 2012, 336: 1171-1174 CrossRef PubMed ADS Google Scholar

[43] Butterfield GL, Lajoie MJ, Gustafson HH, Sellers DL, Nattermann U, Ellis D, Bale JB, Ke S, Lenz GH, Yehdego A, Ravichandran R, Pun SH, King NP, Baker D. Nature, 2017, 552: 415-420 CrossRef PubMed ADS Google Scholar

[44] Yeates TO. Annu Rev Biophys, 2017, 46: 23-42 CrossRef PubMed Google Scholar

[45] Anfinsen CB. Biochem J, 1972, 128: 737-749 CrossRef PubMed Google Scholar

[46] Dobson CM. Nature, 2003, 426: 884-890 CrossRef PubMed ADS Google Scholar

[47] Chiti F, Dobson CM. Annu Rev Biochem, 2006, 75: 333-366 CrossRef PubMed Google Scholar

[48] Gregersen N, Bross P, Vang S, Christensen JH. Annu Rev Genom Hum Genet, 2006, 7: 103-124 CrossRef PubMed Google Scholar

[49] Hartl FU, Bracher A, Hayer-Hartl M. Nature, 2011, 475: 324-332 CrossRef PubMed Google Scholar

[50] Dill KA, MacCallum JL. Science, 2012, 338: 1042-1046 CrossRef PubMed ADS Google Scholar

[51] Sweeney P, Park H, Baumann M, Dunlop J, Frydman J, Kopito R, McCampbell A, Leblanc G, Venkateswaran A, Nurmi A, Hodgson R. Transl Neurodegener, 2017, 6: 6 CrossRef PubMed Google Scholar

[52] Hamley IW. Chem Rev, 2012, 112: 5147-5192 CrossRef PubMed Google Scholar

[53] Herschlag D. J Biol Chem, 1995, 270: 20871-20874 CrossRef PubMed Google Scholar

[54] Lei ZC, Yin X, Wang X, Ke G, Cao X, Fan C, Yang CJ, Liang H, Tian ZQ. Giant, 2020, 1: 100008 CrossRef Google Scholar

[55] Bowie JU. Nature, 2005, 438: 581-589 CrossRef PubMed ADS Google Scholar

[56] Skach WR. Nat Struct Mol Biol, 2009, 16: 606-612 CrossRef PubMed Google Scholar

[57] Gao YQ, Yang W, Karplus M. Cell, 2005, 123: 195-205 CrossRef PubMed Google Scholar

[58] Conde C, Cáceres A. Nat Rev Neurosci, 2009, 10: 319-332 CrossRef PubMed Google Scholar

[59] Harano Y, Kinoshita M. BioPhys J, 2005, 89: 2701-2710 CrossRef PubMed ADS Google Scholar

[60] Imai T, Harano Y, Kinoshita M, Kovalenko A, Hirata F. J Chem Phys, 2006, 125: 024911 CrossRef PubMed ADS Google Scholar

[61] Ball P. Chem Rev, 2008, 108: 74-108 CrossRef PubMed Google Scholar

[62] Cui D, Ou S, Patel S. Proteins, 2014, 82: 3312-3326 CrossRef PubMed Google Scholar

[63] Milo R. BioEssays, 2013, 35: 1050-1055 CrossRef PubMed Google Scholar

[64] Zimmerman SB, Minton AP. Annu Rev Biophys Biomol Struct, 1993, 22: 27-65 CrossRef PubMed Google Scholar

[65] Ellis RJ. Trends Biochem Sci, 2001, 26: 597-604 CrossRef Google Scholar

[66] Zhou HX, Rivas G, Minton AP. Annu Rev Biophys, 2008, 37: 375-397 CrossRef PubMed Google Scholar

[67] Ando T, Skolnick J. Proc Natl Acad Sci USA, 2010, 107: 18457-18462 CrossRef PubMed ADS Google Scholar

[68] Dhar A, Samiotakis A, Ebbinghaus S, Nienhaus L, Homouz D, Gruebele M, Cheung MS. Proc Natl Acad Sci USA, 2010, 107: 17586-17591 CrossRef PubMed ADS Google Scholar

[69] Hyman AA, Weber CA, Jülicher F. Annu Rev Cell Dev Biol, 2014, 30: 39-58 CrossRef PubMed Google Scholar

[70] Bergeron-Sandoval LP, Safaee N, Michnick SW. Cell, 2016, 165: 1067-1079 CrossRef PubMed Google Scholar

[71] Alberti S. Curr Biol, 2017, 27: R1097-R1102 CrossRef PubMed Google Scholar

[72] Banani SF, Lee HO, Hyman AA, Rosen MK. Nat Rev Mol Cell Biol, 2017, 18: 285-298 CrossRef PubMed Google Scholar

[73] Boeynaems S, Alberti S, Fawzi NL, Mittag T, Polymenidou M, Rousseau F, Schymkowitz J, Shorter J, Wolozin B, Van Den Bosch L, Tompa P, Fuxreiter M. Trends Cell Biol, 2018, 28: 420-435 CrossRef PubMed Google Scholar

[74] Williams RJ, Smith AM, Collins R, Hodson N, Das AK, Ulijn RV. Nat Nanotech, 2009, 4: 19-24 CrossRef PubMed ADS Google Scholar

[75] Soetan N, Erwin WR, Tonigan AM, Walker DG, Bardhan R. J Phys Chem C, 2017, 121: 18186-18194 CrossRef Google Scholar

[76] Baccile N, Selmane M, Le Griel P, Prévost S, Perez J, Stevens CV, Delbeke E, Zibek S, Guenther M, Soetaert W, Van Bogaert INA, Roelants S. Langmuir, 2016, 32: 6343-6359 CrossRef PubMed Google Scholar

[77] Prins LJ, Timmerman P, Reinhoudt DN. J Am Chem Soc, 2001, 123: 10153-10163 CrossRef PubMed Google Scholar

[78] Leandri V, Yang W, Gardner JM, Boschloo G, Ott S. ACS Appl Energy Mater, 2018, 1: 202-210 CrossRef Google Scholar

[79] Zhang KQ, Liu XY. Nature, 2004, 429: 739-743 CrossRef PubMed ADS Google Scholar

[80] Liu H, Xu Y, Li F, Yang Y, Wang W, Song Y, Liu D. Angew Chem Int Ed, 2007, 46: 2515-2517 CrossRef PubMed Google Scholar

[81] Kim BG, Kim MS, Kim J. ACS Nano, 2010, 4: 2160-2166 CrossRef PubMed Google Scholar

[82] Ellis J. Nature, 1987, 328: 378-379 CrossRef PubMed Google Scholar

[83] Cheng MY, Hartl FU, Martin J, Pollock RA, Kalousek F, Neupert W, Hallberg EM, Hallberg RL, Horwich AL. Nature, 1989, 337: 620-625 CrossRef PubMed ADS Google Scholar

[84] Horwich AL, Fenton WA. Quart Rev Biophys, 2020, 53: e4 CrossRef PubMed Google Scholar

[85] Ritossa F. Experientia, 1962, 18: 571-573 CrossRef Google Scholar

[86] Tissiéres A, Mitchell HK, Tracy UM. J Mol Biol, 1974, 84: 389-398 CrossRef Google Scholar

[87] Bardwell JCA, Craig EA. Proc Natl Acad Sci USA, 1984, 81: 848-852 CrossRef PubMed ADS Google Scholar

[88] Schuh S, Yonemoto W, Brugge J, Bauer VJ, Riehl RM, Sullivan WP, Toft DO. J Biol Chem, 1985, 260: 14292–14296. Google Scholar

[89] Langer T, Pfeifer G, Martin J, Baumeister W, Hartl FU. EMBO J, 1992, 11: 4757-4765 CrossRef Google Scholar

[90] Braig K, Otwinowski Z, Hegde R, Boisvert DC, Joachimiak A, Horwich AL, Sigler PB. Nature, 1994, 371: 578-586 CrossRef PubMed ADS Google Scholar

[91] Bukau B, Horwich AL. Cell, 1998, 92: 351-366 CrossRef Google Scholar

[92] Bukau B, Weissman J, Horwich A. Cell, 2006, 125: 443-451 CrossRef PubMed Google Scholar

[93] Laskey RA, Honda BM, Mills AD, Finch JT. Nature, 1978, 275: 416-420 CrossRef PubMed ADS Google Scholar

[94] Ellis RJ. Trends Biochem Sci, 2006, 31: 395-401 CrossRef PubMed Google Scholar

[95] Ellis RJ. Phil Trans R Soc B, 2013, 368: 20110398 CrossRef PubMed Google Scholar

[96] Liu C, Young AL, Starling-Windhof A, Bracher A, Saschenbrecker S, Rao BV, Rao KV, Berninghausen O, Mielke T, Hartl FU, Beckmann R, Hayer-Hartl M. Nature, 2010, 463: 197-202 CrossRef PubMed ADS Google Scholar

[97] Hauser T, Bhat JY, Miličić G, Wendler P, Hartl FU, Bracher A, Hayer-Hartl M. Nat Struct Mol Biol, 2015, 22: 720-728 CrossRef PubMed Google Scholar

[98] Wilson RH, Hayer-Hartl M. Biochemistry, 2018, 57: 3210-3216 CrossRef PubMed Google Scholar

[99] Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. Nature, 1997, 389: 251-260 CrossRef PubMed ADS Google Scholar

[100] Hammond CM, Strømme CB, Huang H, Patel DJ, Groth A. Nat Rev Mol Cell Biol, 2017, 18: 141-158 CrossRef PubMed Google Scholar

[101] Chen P, Dong L, Hu M, Wang YZ, Xiao X, Zhao Z, Yan J, Wang PY, Reinberg D, Li M, Li W, Li G. Mol Cell, 2018, 71: 284-293.e4 CrossRef PubMed Google Scholar

[102] Wang J, Gao S, Peng X, Wu K, Yang S. IJMS, 2019, 20: 4591 CrossRef PubMed Google Scholar

[103] Orphanides G, LeRoy G, Chang CH, Luse DS, Reinberg D. Cell, 1998, 92: 105-116 CrossRef Google Scholar

[104] Li W, Chen P, Yu J, Dong L, Liang D, Feng J, Yan J, Wang PY, Li Q, Zhang Z, Li M, Li G. Mol Cell, 2016, 64: 120-133 CrossRef PubMed Google Scholar

[105] Jeronimo C, Poitras C, Robert F. Cell Rep, 2019, 28: 1206-1218.e8 CrossRef PubMed Google Scholar

[106] Liu Y, Zhou K, Zhang N, Wei H, Tan YZ, Zhang Z, Carragher B, Potter CS, D'Arcy S, Luger K. Nature, 2020, 577: 426-431 CrossRef PubMed Google Scholar

[107] Talbert PB, Henikoff S. Nat Rev Mol Cell Biol, 2016, 18: 115-126 CrossRef PubMed Google Scholar

[108] Buschbeck M, Hake SB. Nat Rev Mol Cell Biol, 2017, 18: 299-314 CrossRef PubMed Google Scholar

[109] Mizuguchi G, Shen X, Landry J, Wu WH, Sen S, Wu C. Science, 2004, 303: 343-348 CrossRef PubMed ADS Google Scholar

[110] Eustermann S, Schall K, Kostrewa D, Lakomek K, Strauss M, Moldt M, Hopfner KP. Nature, 2018, 556: 386-390 CrossRef PubMed ADS Google Scholar

[111] Dick RA, Zadrozny KK, Xu C, Schur FKM, Lyddon TD, Ricana CL, Wagner JM, Perilla JR, Ganser-Pornillos BK, Johnson MC, Pornillos O, Vogt VM. Nature, 2018, 560: 509-512 CrossRef PubMed ADS Google Scholar

[112] Dick RA, Mallery DL, Vogt VM, James LC. Viruses, 2018, 10: 640-651 CrossRef PubMed Google Scholar

[113] Mallery DL, Faysal KMR, Kleinpeter A, Wilson MSC, Vaysburd M, Fletcher AJ, Novikova M, Böcking T, Freed EO, Saiardi A, James LC. Cell Rep, 2019, 29: 3983-3996.e4 CrossRef PubMed Google Scholar

[114] Honzatko RB, Crawford JL, Monaco HL, Ladner JE, Ewards BFP, Evans DR, Warren SG, Wiley DC, Ladner RC, Lipscomb WN. J Mol Biol, 1982, 160: 219-263 CrossRef Google Scholar

[115] Kantrowitz ER. Archives Biochem Biophys, 2012, 519: 81-90 CrossRef PubMed Google Scholar

[116] Lipscomb WN, Kantrowitz ER. Acc Chem Res, 2012, 45: 444-453 CrossRef PubMed Google Scholar

[117] Dorsam RT, Gutkind JS. Nat Rev Cancer, 2007, 7: 79-94 CrossRef PubMed Google Scholar

[118] Rosenbaum DM, Rasmussen SGF, Kobilka BK. Nature, 2009, 459: 356-363 CrossRef PubMed ADS Google Scholar

[119] Wootten D, Christopoulos A, Marti-Solano M, Babu MM, Sexton PM. Nat Rev Mol Cell Biol, 2018, 19: 638-653 CrossRef PubMed Google Scholar

[120] Bressloff PC, Newby JM. Rev Mod Phys, 2013, 85: 135-196 CrossRef ADS Google Scholar

[121] Catterall WA. Cold Spring Harbor Perspectives Biol, 2011, 3: a003947 CrossRef PubMed Google Scholar

[122] Alberts B. Molecular Biology of the Cell. New York: W. W. Norton & Company, 2014. Google Scholar

[123] Sakai F, Yang G, Weiss MS, Liu Y, Chen G, Jiang M. Nat Commun, 2014, 5: 4634 CrossRef PubMed ADS Google Scholar

[124] Ashkenasy G, Hermans TM, Otto S, Taylor AF. Chem Soc Rev, 2017, 46: 2543-2554 CrossRef PubMed Google Scholar

[125] Ludlow RF, Otto S. Chem Soc Rev, 2008, 37: 101-108 CrossRef PubMed Google Scholar

[126] Mattia E, Otto S. Nat Nanotech, 2015, 10: 111-119 CrossRef PubMed ADS Google Scholar

[127] Gale PA, Davis JT, Quesada R. Chem Soc Rev, 2017, 46: 2497-2519 CrossRef PubMed Google Scholar

[128] Wu X, Howe ENW, Gale PA. Acc Chem Res, 2018, 51: 1870-1879 CrossRef PubMed Google Scholar

[129] Turberfield AJ, Mitchell JC, Yurke B, Mills AP, Blakey MI, Simmel FC. Phys Rev Lett, 2003, 90: 118102 CrossRef PubMed ADS Google Scholar

[130] Yin P, Choi HMT, Calvert CR, Pierce NA. Nature, 2008, 451: 318-322 CrossRef PubMed ADS Google Scholar

[131] Peterlinz KA, Georgiadis R. Langmuir, 1996, 12: 4731-4740 CrossRef Google Scholar

[132] Bai W, Yager KG, Ross CA. Macromolecules, 2015, 48: 8574-8584 CrossRef ADS Google Scholar

[133] Müller-Dethlefs K, Hobza P. Chem Rev, 2000, 100: 143-168 CrossRef PubMed Google Scholar

[134] Engel J. Biophysics. Berlin: Springer, 1983. Google Scholar

[135] Guo Y, Li D, Zhang S, Yang Y, Liu JJ, Wang X, Liu C, Milkie DE, Moore RP, Tulu US, Kiehart DP, Hu J, Lippincott-Schwartz J, Betzig E, Li D. Cell, 2018, 175: 1430-1442.e17 CrossRef PubMed Google Scholar

[136] Fang H, Sun Y, Wang X, Sharma M, Chen Z, Cao X, Utz M, Tian Z. Sci China Chem, 2018, 61: 1460-1464 CrossRef Google Scholar

[137] Klein ML, Shinoda W. Science, 2008, 321: 798-800 CrossRef PubMed ADS Google Scholar

[138] Schwierz N, Frost CV, Geissler PL, Zacharias M. J Am Chem Soc, 2016, 138: 527-539 CrossRef PubMed Google Scholar

[139] Sevim S, Sorrenti A, Franco C, Furukawa S, Pané S, deMello AJ, Puigmartí-Luis J. Chem Soc Rev, 2018, 47: 3788-3803 CrossRef PubMed Google Scholar

[140] Ragazzon G, Prins LJ. Nat Nanotech, 2018, 13: 882-889 CrossRef PubMed ADS Google Scholar

[141] Hess H, Ross JL. Chem Soc Rev, 2017, 46: 5570-5587 CrossRef PubMed Google Scholar

[142] Su NQ, Xu X. Annu Rev Phys Chem, 2017, 68: 155-182 CrossRef PubMed ADS Google Scholar

[143] Duan LL, Feng GQ, Zhang QG. Sci Rep, 2016, 6: 31488 CrossRef PubMed ADS Google Scholar

[144] Salomon-Ferrer R, Case DA, Walker RC. WIREs Comput Mol Sci, 2013, 3: 198-210 CrossRef Google Scholar

[145] Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M. J Comput Chem, 1983, 4: 187-217 CrossRef Google Scholar

[146] Jo S, Cheng X, Lee J, Kim S, Park SJ, Patel DS, Beaven AH, Lee KI, Rui H, Park S, Lee HS, Roux B, MacKerell Jr AD, Klauda JB, Qi Y, Im W. J Comput Chem, 2017, 38: 1114-1124 CrossRef PubMed Google Scholar

[147] Guo W, Wu A, Zhang IY, Xu X. J Comput Chem, 2012, 33: 2142-2160 CrossRef PubMed Google Scholar

[148] Kaiser J, Castellano M, Gnandt D, Koslowski T. J Comput Chem, 2020, 41: 1105-1115 CrossRef PubMed Google Scholar

[149] Kevrekidis IG, Samaey G. Annu Rev Phys Chem, 2009, 60: 321-344 CrossRef PubMed ADS Google Scholar

[150] Han J, Li M, Guo L. J Sys Sci Compl, 2006, 19: 54–62. Google Scholar

[151] Guo L. J Sys Sci & Math Sci, 2011, 9: 1014–1018 (in Chinese) [郭雷. 系统科学与数学, 2011, 9: 1014–1018]. Google Scholar

[152] Li M, Lü L, Deng Y, Hu MB, Wang H, Medo M, Stanley HE. Natl Sci Rev, 2020, 7: 1296-1305 CrossRef Google Scholar

[153] Anderson PW. Science, 1972, 177: 393-396 CrossRef PubMed ADS Google Scholar

[154] Horgan J. Sci Am, 1994, 271: 34–35. Google Scholar

  • Figure 1

    Typical artificial molecular self-assembly: (a) typical method of molecular self-assembly; (b) host guest complexes [28]; (c) molecular knots [18]; (d) self-assembled monolayers [13]; (e) supramolecular organic frameworks [25]; (f) supramolecular polymers [23]; (g) 3D DNA crystals [27] (color online).

  • Figure 2

    Typical biological molecular assembly: (a) hemoglobin [32]; (b) proteasome [33]; (c) 30 nm fiber of chromatin [34]; (d) assembly of virus [35]; (e) kinesin moving along microtubule [36,37] (color online).

  • Figure 3

    The complex folding energy landscape of protein to different assembly products [49] (color online).

  • Figure 4

    Molecular assembly in different environments: (a) molecular assembly in dilute solution; (b) molecular assembly will be slowed down in crowded solution; (c) molecular assembly will be accelerated in membranous or non-membranous organelles (color online).

  • Figure 5

    Self-assembly and catassembly: (a–c) self-assembly; (d–f) simple catassembly; (g) complex catassembly (color online).

  • Figure 6

    The folding of protein assisted by molecular chaperone [49] (color online).

  • Figure 7

    The assembly and disassembly of molecules assisted by molecular chaperones: (a) The assembly of RuBisCO complex assisted by RbcX2 [96]; (b) FACT can assist the diassembly and assembly of nucleosome during transcription [101]; (c) SWR1 can assist the disassembly of canonical nucleosome and the assembly of H2A.Z nucleosome, INO80 can assist the reverse process [102] (color online).

  • Figure 8

    6-IP act as catassembler for the assembly of HIV-1 [111] (color online).

  • Figure 9

    A typical catassembly process has four steps: recognition, activation, assembly and leaving (color online).

  • Table 1   Differences between artificial and biological molecular assembly

    人工分子组装

    生命体分子组装

    组装基元

    较少且简单

    分子量大、数量多且复杂

    基元变构性

    较弱且不可控

    高度可控

    组装过程

    路径较简单

    路径多且复杂

    能量输入

    非耗散为主

    耗散为主

    熵/焓

    以焓为主

    熵的影响很大

    组装级次

    一般为单级、简单协同

    多级组装、复杂协同

    催组剂

    无或简单催组剂

    多种不同功能的催组剂

    动力学

    简单

    复杂

    组装环境

    稀溶液

    拥挤

    组装体功能

    较为单一

    多种且强大