logo

SCIENTIA SINICA Informationis, Volume 50 , Issue 5 : 766-776(2020) https://doi.org/10.1360/SSI-2019-0121

Strict parity symmetric prolate spheroidal wave functions signal construction and low complexity detection method

More info
  • ReceivedJun 6, 2019
  • AcceptedSep 17, 2019
  • PublishedApr 24, 2020

Abstract

Aiming at solving the problem of high signal processing and detection complexity of prolate spheroidal wave functions (PSWFs), we propose a time domain strict parity symmetry PSWFs signal construction method, based on the characteristics of PSWFs with the same parity symmetry after linear operation. According to the characteristics that the PSWFs of the same parity symmetry have the same orthogonality in the half-symbol period and the whole symbol period, we propose a PSWFs signal detection method based on the parity characteristics, which groups processing of odd symmetric and even symmetric signals and detects PSWFs signal in the half-symbol period signal to reduce the number of signal solutions for participating in the operation. Compared with the coherent detection method, theoretical and numerical analyses show that the proposed signal detection method can reduce the computational complexity from $O(NQ)$ to $O(NQ/2)$ (i.e., about 50%) without reducing the system error performance.


Funded by

国家自然科学基金(6170012154)

山东省“泰山学者" 建设工程专项经费基金(ts20081130)


References

[1] Lien S Y, Shieh S L, Huang Y. 5G New Radio: Waveform, Frame Structure, Multiple Access, and Initial Access. IEEE Commun Mag, 2017, 55: 64-71 CrossRef Google Scholar

[2] Cai Y L, Qin Z J, Cui F Y. Modulation and Multiple Access for 5G Networks. IEEE Commun Surv Tutorials, 2018, 20: 629-646 CrossRef Google Scholar

[3] You X J, Zhang C, Tan S X, et al. AI for 5G: research directions and paradigms. Sci Sin Inform, 2018, 48: 1589--1602 [尤小虎, 张川, 谈晓思, 等. 基于 AI 的 5G 技术 - 研究方向与范例. 中国科学: 信息科学, 2018, 48: 1589--1602]. Google Scholar

[4] Shan H G, Zhang Y N, Zhuang W H. User Behavior-Aware Scheduling Based on Time-Frequency Resource Conversion. IEEE Trans Veh Technol, 2017, 66: 8429-8444 CrossRef Google Scholar

[5] Xin C S, Paul P, Song M. On Dynamic Spectrum Allocation in Geo-Location Spectrum Sharing Systems. IEEE Trans Mobile Comput, 2019, 18: 923-933 CrossRef Google Scholar

[6] Zhang L, Liang Y C, Xiao M. Spectrum Sharing for Internet of Things: A Survey. IEEE Wirel Commun, 2019, 26: 132-139 CrossRef Google Scholar

[7] Deng Q Y, Li Z T, Chen J B. Dynamic Spectrum Sharing for Hybrid Access in OFDMA-Based Cognitive Femtocell Networks. IEEE Trans Veh Technol, 2018, 67: 10830-10840 CrossRef Google Scholar

[8] Yang Y, Zhang Q Y, Wang Y, et al. Multi-strategy dynamic spectrum access in cognitive radio networks: Modeling, analysis and optimization. China Commun, 2019, 6: 103--121. Google Scholar

[9] Sharma S K, Bogale T E, Le L B. Dynamic Spectrum Sharing in 5G Wireless Networks With Full-Duplex Technology: Recent Advances and Research Challenges. IEEE Commun Surv Tutorials, 2018, 20: 674-707 CrossRef Google Scholar

[10] Zhou H B, Xu W C, Bi Y G. Toward 5G Spectrum Sharing for Immersive-Experience-Driven Vehicular Communications. IEEE Wirel Commun, 2017, 24: 30-37 CrossRef Google Scholar

[11] Zhang W, Wang C X, Ge X. Enhanced 5G Cognitive Radio Networks Based on Spectrum Sharing and Spectrum Aggregation. IEEE Trans Commun, 2018, 66: 6304-6316 CrossRef Google Scholar

[12] Ibrahim M, Demir A F, Arslan H. Time-Frequency Warped Waveforms. IEEE Commun Lett, 2019, 23: 36-39 CrossRef Google Scholar

[13] Selinis I, Katsaros K, Allayioti M. The Race to 5G Era; LTE and Wi-Fi. IEEE Access, 2018, 6: 56598-56636 CrossRef Google Scholar

[14] Fettweis G, Krondorf M, Bittner S. GFDM - generalized frequency division multiplexing. In: Proceedings of IEEE 69th Vehicular Technology Conference. Barcelona: Springer-VTC, 2009. 1550--2252. Google Scholar

[15] Ozturk E, Basar E, Cirpan H A. Generalized Frequency Division Multiplexing With Flexible Index Modulation Numerology. IEEE Signal Process Lett, 2018, 25: 1480-1484 CrossRef ADS Google Scholar

[16] Farhang-Boroujeny B. OFDM Versus Filter Bank Multicarrier. IEEE Signal Process Mag, 2011, 28: 92-112 CrossRef ADS Google Scholar

[17] Jamal H, Matolak D W. Dual-Polarization FBMC for Improved Performance in Wireless Communication Systems. IEEE Trans Veh Technol, 2019, 68: 349-358 CrossRef Google Scholar

[18] Nissel R, Rupp M. Pruned DFT-Spread FBMC: Low PAPR, Low Latency, High Spectral Efficiency. IEEE Trans Commun, 2018, 66: 4811-4825 CrossRef Google Scholar

[19] Vakilian V, Wild T, Schaich F, et al. Universal-filtered multi-carrier technique for wireless systems beyond LTE. In: Proceedings of IEEE Globecom Workshops (GC Wkshps), Atlanta, 2013. 9--13. Google Scholar

[20] Li Y H, Tian B, Yi K C. A Novel Hybrid CFO Estimation Scheme for UFMC-Based Systems. IEEE Commun Lett, 2017, 21: 1337-1340 CrossRef Google Scholar

[21] Buzzi S, D Andrea C, Li D. MIMO-UFMC Transceiver Schemes for Millimeter-Wave Wireless Communications. IEEE Trans Commun, 2019, 67: 3323-3336 CrossRef Google Scholar

[22] Wang H X, Zhao Z Y, Liu X G, et al. China Patent, ZL2008159238.3, 2011-02-02. Google Scholar

[23] Chen Z N, Wang H X, Liu X G. Maximal capacity nonorthogonal pulse shape modulation. Chin J Aeronautics, 2015, 28: 1699-1708 CrossRef Google Scholar

[24] de Sanctis M, Cianca E, Rossi T. Waveform design solutions for EHF broadband satellite communications. IEEE Commun Mag, 2015, 53: 18-23 CrossRef Google Scholar

[25] Slepian D, Pollak H O. Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty - I. Bell Syst Technical J, 1961, 40: 43-63 CrossRef Google Scholar

[26] Wang H X, Lu F P, Liu C H, et al. Study on time-frequency characteristics of cross-terms between prolate spheroidal wave function signal. Journal of Electronics & Information Technology, 2017, 39: 1319--1325. Google Scholar

[27] Mahata K, Hyder M M. Frequency Estimation From Arbitrary Time Samples. IEEE Trans Signal Process, 2016, 64: 5634-5643 CrossRef ADS Google Scholar

[28] Osipov A, Rokhlin V, Xiao H. Prolate Spheroidal Wave Functions of Order Zero. Berlin: Springer, 2013. Google Scholar

[29] Liu C H, Wang H X, Zhang L, et al. A fast convergent algorithm of reconstructing bandpass prolate spheroidal wave function. J Jilin Univ (Eng Tech), 2013, 43: 1091--1097. Google Scholar

[30] Parr B, ByungLok Cho B, Wallace K. A novel ultra-wideband pulse design algorithm. IEEE Commun Lett, 2003, 7: 219-221 CrossRef Google Scholar

[31] Percival D B, Walden A T. Spectral Analysis for Physical Applications. Cambridge: Cambridge University Press, 1993. 378--390. Google Scholar

[32] Beheshti S, Hashemi M, Sejdic E. Mean Square Error Estimation in Thresholding. IEEE Signal Process Lett, 2011, 18: 103-106 CrossRef ADS Google Scholar

[33] Nissel R, Schwarz S, Rupp M. Filter Bank Multicarrier Modulation Schemes for Future Mobile Communications. IEEE J Sel Areas Commun, 2017, 35: 1768-1782 CrossRef Google Scholar

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号