Cellular neural networks (CNN) have a simple local interconnect structure and high-speed parallel processing capability. As the basic model for a constructing artificial retina, CNNs can be applied to image enhancement in the machine vision field. However, existing image enhancement methods based on CNNs face several challenges. For example, when using common fixed templates, it is difficult to obtain ideal results when handling complex images in real-world applications. In addition, the lack of bionic considerations can cause failures when simulating the powerful global and local adaptive adjustment characteristics of human vision. Therefore, this paper proposes a biomimetic adaptive memristive CNN (BAM-CNN) that combines CNNs, human visual adaptive tri-Gaussian theory and memristor, and nano information devices. The proposed CNN can be used for image enhancement. Specifically, the memristive CNN is constructed based on emerging memristors that are programmable, non-volatile, and synapse-plastic. Merged with the tri-Gaussian model for the receptive field of neurons, an adaptive CNN template design algorithm for biomimetic image enhancement is proposed using the image processing features of the Gaussian kernel function and CNNs. In this paper, gray-scale and color images are taken as target examples in image enhancement experiments. The experimental results demonstrate that the proposed BAM-CNN significantly improves the global brightness, local contrast, and sharpness of the image. This paper provides a novel design and implementation scheme for adaptive templates of CNNs, which can improve CNNs' biomimetic characteristics and hardware implementation feasibility. The proposed BAM-CNN can be used to develop innovative techniques for intelligent image processing besides image enhancement.
国家自然科学基金(61976246,61601376,61672436)
国家重点研发计划(2018YFB1306600,2018YFB1306604)
中国博士后科学基金特别资助(2018T110937)
重庆市留学人员创业创新支持计划(cx2019126)
[1] 王 , 周 , 吴 . 基于HVS 与PCNN 的彩色图像增强. Sci Sin-Inf, 2010, 40: 909-924 CrossRef Google Scholar
[2] Tang Q L, Sang N, Liu H H, et al. Detecting natural image contours by combining visual perception and machinelearning. SciSin Inform, 2013, 43: 1124--1135[唐奇伶, 桑农, 刘海华, 等. 视觉感知结合学习的自然图像轮廓检测. SciSin Inform, 2013, 43: 1124--1135]. Google Scholar
[3] Shen H, Li X, Zhang L. Compressed Sensing-Based Inpainting of Aqua Moderate Resolution Imaging Spectroradiometer Band 6 Using Adaptive Spectrum-Weighted Sparse Bayesian Dictionary Learning. IEEE Trans Geosci Remote Sens, 2014, 52: 894-906 CrossRef ADS Google Scholar
[4] Xinghua Li , Huanfeng Shen , Liangpei Zhang . Recovering Quantitative Remote Sensing Products Contaminated by Thick Clouds and Shadows Using Multitemporal Dictionary Learning. IEEE Trans Geosci Remote Sens, 2014, 52: 7086-7098 CrossRef ADS Google Scholar
[5] Muhammad F R, Asmala A, Othman M, et al. Quantifying haze from satellite using haze optimized transformation (HOT). Appl Math Sci, 2015, 9, 1407-1416. Google Scholar
[6] Ding C, Dong L L, Xu W H. Image details enhancement by gradient field bi-interval equalization. Acta Electron Sin, 2017, 45: 1165-1174. Google Scholar
[7] Kolb H. How the retina works. Am Sci, 2003, 91: 29-35. Google Scholar
[8] Tao L, Asari V K. A robust image enhancement technique for improving image visual quality in shadowed scenes. In: Image and Video Retrieval. Berlin: Springer, 2005. 395--404. Google Scholar
[9] Land E H. The retina theory of color vision. Sci Am, 1997, 237: 108-129. Google Scholar
[10] Jobson D J, Rahman Z, Woodell G A. Properties and performance of a center/surround retinex. IEEE Trans Image Process, 1997, 6: 451-462 CrossRef PubMed ADS Google Scholar
[11] Wang S J, Ding X H, Liao Y H, et a1. A novel bio-inspired algorithm for color image enhancement. Acta Electron Sin, 2008, 36: 1970-1973. Google Scholar
[12] Webster M. Human colour perception and its adaptation.Network-Comp Neural, 1996, 17: 587-601. Google Scholar
[13] Chao-Yi L, Xing P, Yi-Xiong Z. Role of the extensive area outside the x-cell receptive field in brightness information transmission. Vision Res, 1991, 31: 1529-1540 CrossRef Google Scholar
[14] Zhao G Z, Duan H B. Progresses in biological eagle-eye vision technology. SST, 2017, 47: 514-523 CrossRef Google Scholar
[15] Solomon S G, White A J R, Martin P R. Extraclassical Receptive Field Properties of Parvocellular, Magnocellular, and Koniocellular Cells in the Primate Lateral Geniculate Nucleus. J Neurosci, 2002, 22: 338-349 CrossRef Google Scholar
[16] Nolt M, Kumbhani R, Palmer L. Contrast-dependent spatial summation in the lateral geniculate nucleus and retina of the cat. J Neurosci, 2004, 92: 1708-1717. Google Scholar
[17] Ringach D L, Shapley R M, Hawken M J. Orientation Selectivity in Macaque V1: Diversity and Laminar Dependence. J Neurosci, 2002, 22: 5639-5651 CrossRef Google Scholar
[18] Chua L, Yang L. Cellular neural networks: theory. IEEE Trans Circ Syst, 1998, 35: 1257-1272. Google Scholar
[19] Zhang H, Wang Z. Global asymptotic stability of delayed cellular neural networks.. IEEE Trans Neural Netw, 2007, 18: 947-950 CrossRef PubMed Google Scholar
[20] Wang L, Yang T, Hu X. Color image edge extraction using memristor-based CNN. Sci Sin-Inf, 2017, 47: 863-877 CrossRef Google Scholar
[21] Roska T, Boros T, Radványi A. Detecting moving and standing objects using cellular neural networks. Int J Circ Theor Appl, 1992, 20: 613-628 CrossRef Google Scholar
[22] Suzuki H, Matsumoto T, Chua L O. A CNN handwritten character recognizer. Int J Circ Theor Appl, 1992, 20: 601-612 CrossRef Google Scholar
[23] Bouzerdoum A, Pinter R B. Shunting inhibitory cellular neural networks: derivation and stability analysis. IEEE Trans Circ Syst I: Fundamental Theory Appl, 1993, 40: 215--221. Google Scholar
[24] Kondo K, Lguch M, Lshigaki H, et al. Design of complex-valued CNN filters for medical image enhancement. In: Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference, 2001. 1642--1646. Google Scholar
[25] Kim H, Sah M, Yang C, et al. Neural synaptic weighting with a pulse-based memristor circuit. IEEE Trans Circ Syst, 2012, 59: 148-158. Google Scholar
[26] Hyuncheol C, Ram B, Sedong P, et al. Linear programming of voltage-controlled memristors with an anti-serial memristor circuit. In: Proceedings of IEEE International Symposium on Circuits and Systems, 2015. 1142--1145. Google Scholar
[27] Hu X F, Feng G, Duan S K, et al. A memristive multilayer cellular neural network with applications to image processing. IEEE Trans Neural Netw Learn Syst, 2017, 28: 1889-1901. Google Scholar
[28] Kvatinsky S, Fruedman E, Kolodny A, et al. TEAM: ThrEshold adaptive memristor model. IEEE Trans Circ Syst I: Regular Papers, 2012, 60: 211-221. Google Scholar
[29] Wang L, Li H, Duan S. Pavlov associative memory in a memristive neural network and its circuit implementation. Neurocomputing, 2016, 171: 23-29 CrossRef Google Scholar
[30] Yu Y H, Chang C C. A new edge detection approach based on image context analysis. Image Vision Computing, 2006, 24: 1090-1102 CrossRef Google Scholar
[31] Wang L D, Duan M T, Duan S K, et al. Neural networks based on STDP rules and memristor bridge synapses withapplications in image processing. Sci Sin Inform, 2014, 44: 920--930 [王丽丹, 段美涛, 段书凯, 等. 基于STDP 规则和忆阻桥突触的神经网络及图像处理. 中国科学: 信息科学, 2014, 44: 920--930]. Google Scholar
[32] Zheng M W ,Li L X,Peng H P, et al. Fixed-time synchronization of memristive fuzzy BAM cellular neural networks with time-varying delays based on feedback controllers. IEEE Access, 2018, 6, 12085-12102. Google Scholar
[33] Kvatinsky S, Ramadan M, Fruedman E, et al. VTEAM: A general model for voltage-controlled memristors. IEEE Trans Circ Syst II: Express Briefs, 2015, 62: 786-790. Google Scholar
[34] Duan S, Hu X, Dong Z. Memristor-based cellular nonlinear/neural network: design, analysis, and applications.. IEEE Trans Neural Netw Learning Syst, 2015, 26: 1202-1213 CrossRef PubMed Google Scholar
[35] Kim H, Sah M, Yang C, et al. Memristor bridge synapses. P IEEE, 2011, 100: 2061-2070. Google Scholar
[36] Agaian S S, Silver B, Panetta K A. Transform Coefficient Histogram-Based Image Enhancement Algorithms Using Contrast Entropy. IEEE Trans Image Process, 2007, 16: 741-758 CrossRef PubMed ADS Google Scholar
Figure 1
(Color online) CNN topology model
Figure 2
(Color online) Memristive neuron circuit
Figure 3
(Color online) Memristive bridge synapse circuit
Figure 4
(Color online) Template of CNN with $3\times~3$ neighborhood
Figure 5
(Color online) Spatial structure of tri-Gaussian function model. (a) Intermediate exciting module; (b) surrounding inhibition module; (c) edge exciting module; (d) tri-Gaussian model
Figure 6
(a) The curve of the sensitivity $A_1$ of receptive field sensitivity zone to Con; (b) The curve of the radius $\sigma_2$ of receptive field suppression zone to Lum
Figure 7
Color image enhancement process
Figure 8
(Color online) Enhanced effect comparison. (a) Room; (b) Tower
Figure 9
(Color online) House image bionic enhancement. (a) Original image; (b) tri-Gaussian model; (c) adaptive tri-Gaussian model; (d) linearized adaptive tri-Gaussian model; (e) CNN fused with adaptive tri-Gaussian model; (f) BAM-CNN
Figure 10
(Color online) Couple image bionic enhancement. (a) Original image; (b) tri-Gaussian model; (c) adaptive tri-Gaussian model; (d) linearized adaptive tri-Gaussian model; (e) CNN fused with adaptive tri-Gaussian model; (f) BAM-CNN
No | Origin | HE | Retinex | HF | WT | GSL | BAM-CNN |
1 | 652.4262 | 793.3994 | 772.3151 | 793.2867 | 775.8123 | 765.9624 | |
2 | 568.8201 | 698.4078 | 661.9563 | 686.7693 | 559.4216 | 720.0508 | |
3 | 428.2354 | 634.4120 | 611.5280 | 624.0064 | 431.6045 | 676.8831 | |
4 | 214.3378 | 260.6652 | 190.0746 | 255.1763 | 201.0840 | 351.3541 | |
5 | 668.4836 | 755.3688 | 397.2203 | 761.9537 | 725.5078 | 751.9514 | |
6 | 235.5166 | 379.8441 | 242.6934 | 458.4887 | 235.3616 | 443.3711 | |
7 | 392.0305 | 639.9298 | 579.2962 | 427.1555 | 624.6440 | 600.0791 | |
8 | 536.4732 | 673.0242 | 494.2527 | 747.4195 | 554.4671 | 653.2434 | |
9 | 366.8843 | 438.9627 | 382.8986 | 466.4004 | 391.8464 | 441.3711 | |
10 | 553.1127 | 707.4049 | 573.0594 | 728.4262 | 600.4264 | 686.2060 | |
11 | 496.2885 | 464.8486 | 493.9914 | 455.6647 | 492.6860 | 535.5896 | |
12 | 204.1674 | 276.9846 | 215.0037 | 214.5829 | 166.0431 | 204.1674 | |
13 | 181.6859 | 242.8295 | 202.4264 | 290.8129 | 234.6048 | 235.5157 | |
14 | 571.5830 | 860.7786 | 571.9902 | 436.9282 | 560.3997 | 798.4308 | |
15 | 240.2980 | 215.3778 | 240.9412 | 226.5606 | 240.5550 | 240.8652 |
No. | Evaluation index | Origin | TGM | ATGM | LATGM | CNN-TGM | CNN-ATGM | BAM-CNN |
1 | EME | 516.7271 | 574.7419 | 575.0046 | 575.0046 | 676.8831 | 676.8831 | |
SMD2 | 4050246 | 7195030 | 7282118 | 7270258 | 30977436 | 31472958 | ||
2 | EME | 243.7382 | 275.5480 | 275.5480 | 275.5480 | 459.1279 | 459.3054 | |
SMD2 | 1594525 | 3167996 | 3179766 | 3178265 | 5450193 | 5604472 | ||
3 | EME | 424.0944 | 643.9899 | 643.9899 | 643.9899 | 600.0791 | 600.0791 | |
SMD2 | 98474377 | 166954625 | 167164355 | 167153301 | 185927054 | 185878806 | ||
4 | EME | 375.9151 | 428.4620 | 428.4620 | 428.4620 | 535.5896 | 535.5896 | |
SMD2 | 3786709 | 7293439 | 7337408 | 7331335 | 19553768 | 19613745 | ||
5 | EME | 313.2185 | 313.2185 | 313.2185 | 313.1769 | 313.1769 | 313.1769 | |
SMD2 | 14373051 | 17552085 | 17587905 | 17577407 | 31787078 | 31801532 | ||
6 | EME | 638.3819 | 449.2624 | 449.2653 | 449.2624 | 789.0090 | 789.0090 | |
SMD2 | 41016820 | 50170828 | 50303836 | 50288306 | 81008360 | 80827900 | ||
7 | EME | 545.3247 | 691.5614 | 691.5614 | 691.5614 | 760.7921 | 760.8160 | |
SMD2 | 37916146 | 76333187 | 76946567 | 76829900 | 293730676 | 293743101 | ||
8 | EME | 321.9660 | 321.9660 | 321.9660 | 330.6879 | 378.2778 | 378.2835 | |
SMD2 | 1578587 | 3015839 | 3045405 | 3042080 | 10409059 | 10914315 | ||
9 | EME | 587.5047 | 702.2330 | 702.2330 | 702.2330 | 714.8868 | 818.2679 | |
SMD2 | 53099370 | 43866606 | 43869362 | 44086474 | 121734667 | 147002589 | ||
10 | EME | 469.7769 | 615.2829 | 615.2829 | 615.2829 | 741.8416 | 741.9090 | |
SMD2 | 15012384 | 55617848 | 56008629 | 55950050 | 232946196 | 232927961 | ||
11 | EME | 687.2862 | 687.2862 | 687.2862 | 687.2862 | 687.2862 | 687.2862 | |
SMD2 | 3603688 | 5887550 | 5914441 | 5911444 | 15963913 | 16147183 | ||
12 | EME | 240.2980 | 326.2426 | 326.6014 | 326.6014 | 337.4020 | 337.4020 | |
SMD2 | 3012108 | 13620247 | 13682373 | 13674132 | 23959523 | 24304184 | ||
13 | EME | 728.3553 | 728.3553 | 728.3553 | 728.4551 | 728.3553 | 728.3553 | |
SMD2 | 53888055 | 54143765 | 54098895 | 154063947 | 133577888 | 135459162 | ||
14 | EME | 562.2581 | 685.2473 | 685.2473 | 685.2473 | 688.5457 | 688.5457 | |
SMD2 | 2491177 | 3833026 | 3890344 | 3884939 | 17480651 | 17490717 | ||
15 | EME | 519.2382 | 519.2382 | 519.2382 | 572.9556 | 573.0366 | 573.0366 | |
SMD2 | 67393400 | 65403398 | 65802209 | 65740477 | 171273138 | 171206923 | ||
16 | EME | 260.7194 | 288.1046 | 288.2781 | 288.2781 | 383.6287 | 383.6287 | |
SMD2 | 661453 | 4483283 | 4529402 | 4523482 | 13842137 | 13762008 | ||
17 | EME | 303.6955 | 239.0931 | 239.0918 | 239.0931 | 410.2250 | 410.2250 | |
SMD2 | 1093784 | 3612458 | 3645373 | 3642404 | 10117695 | 10056009 | ||
18 | EME | 263.7576 | 211.8428 | 211.9743 | 211.8428 | 380.7958 | 380.7958 | |
SMD2 | 710809 | 7606842 | 9192230 | 7655291 | 29260373 | 29079092 | ||
19 | EME | 303.2979 | 209.0489 | 209.0489 | 209.0489 | 409.5968 | 409.5968 | |
SMD2 | 676089 | 4377827 | 4418391 | 4399980 | 12534276 | 12534276 | ||
20 | EME | 200.8583 | 342.2648 | 342.2648 | 342.2648 | 342.3068 | 342.3068 | |
SMD2 | 34374241 | 50726776 | 50936495 | 50862594 | 93001493 | 93095410 |