References
[1]
Hao
F,
Kodialam
M,
Lakshman
T V.
Fast Dynamic Multiple-Set Membership Testing Using Combinatorial Bloom Filters.
IEEE/ACM Trans Networking,
2012, 20: 295-304
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fast Dynamic Multiple-Set Membership Testing Using Combinatorial Bloom Filters&author=Hao F&author=Kodialam M&author=Lakshman T V&publication_year=2012&journal=IEEE/ACM Trans Networking&volume=20&pages=295-304
[2]
Sen S, Spatscheck O, Wang D M. Accurate, scalable in-network identification of P2P traffic using application signatures. In: Proceedings of the 13th International Conference World Wide Web Conference, Florham Park, 2004. 512--521.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sen S, Spatscheck O, Wang D M. Accurate, scalable in-network identification of P2P traffic using application signatures. In: Proceedings of the 13th International Conference World Wide Web Conference, Florham Park, 2004. 512--521&
[3]
Moore A W, Papagiannaki K. Toward the accurate identification of network applications. In: Proceedings of the 6th International Workshop on Passive and Active Network Measurement, Cambridge, 2005. 41--54.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Moore A W, Papagiannaki K. Toward the accurate identification of network applications. In: Proceedings of the 6th International Workshop on Passive and Active Network Measurement, Cambridge, 2005. 41--54&
[4]
Ertam
F,
Avc?
E.
A new approach for internet traffic classification: GA-WK-ELM.
Measurement,
2017, 95: 135-142
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A new approach for internet traffic classification: GA-WK-ELM&author=Ertam F&author=Avc? E&publication_year=2017&journal=Measurement&volume=95&pages=135-142
[5]
Naoum R S, Abid N A, Al-Sultani Z N. An enhanced resilient backpropagation artificial neural network for intrusion detection system. Int J Comput Sci Netw Secur, 2012, 12: 11--16.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Naoum R S, Abid N A, Al-Sultani Z N. An enhanced resilient backpropagation artificial neural network for intrusion detection system. Int J Comput Sci Netw Secur, 2012, 12: 11--16&
[6]
Naoum R S, Al-Sultani Z N. Learning vector quantization (LVQ) and knearest neighbor for intrusion classification. World Comput Sci Inf Technol J, 2012, 2: 105--109.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Naoum R S, Al-Sultani Z N. Learning vector quantization (LVQ) and knearest neighbor for intrusion classification. World Comput Sci Inf Technol J, 2012, 2: 105--109&
[7]
Aburomman
A A,
Ibne Reaz
M B.
A novel weighted support vector machines multiclass classifier based on differential evolution for intrusion detection systems.
Inf Sci,
2017, 414: 225-246
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A novel weighted support vector machines multiclass classifier based on differential evolution for intrusion detection systems&author=Aburomman A A&author=Ibne Reaz M B&publication_year=2017&journal=Inf Sci&volume=414&pages=225-246
[8]
Eid H F, Darwish A, Ella H A, et al. Principle components analysis and support vector machine based intrusion detection system. In: Proceedings of the 10th International Conference on Intelligent Systems Design and Applications, Cairo, 2010. 363--367.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Eid H F, Darwish A, Ella H A, et al. Principle components analysis and support vector machine based intrusion detection system. In: Proceedings of the 10th International Conference on Intelligent Systems Design and Applications, Cairo, 2010. 363--367&
[9]
Kuang
F,
Xu
W,
Zhang
S.
A novel hybrid KPCA and SVM with GA model for intrusion detection.
Appl Soft Computing,
2014, 18: 178-184
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A novel hybrid KPCA and SVM with GA model for intrusion detection&author=Kuang F&author=Xu W&author=Zhang S&publication_year=2014&journal=Appl Soft Computing&volume=18&pages=178-184
[10]
Rastegari
S,
Hingston
P,
Lam
C P.
Evolving statistical rulesets for network intrusion detection.
Appl Soft Computing,
2015, 33: 348-359
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Evolving statistical rulesets for network intrusion detection&author=Rastegari S&author=Hingston P&author=Lam C P&publication_year=2015&journal=Appl Soft Computing&volume=33&pages=348-359
[11]
He J, Zhao L. Research on P2P traffic classification based on PCA-Probabilistic neural network. Comput Dev Appl, 2011, 7: 1--3.
Google Scholar
http://scholar.google.com/scholar_lookup?title=He J, Zhao L. Research on P2P traffic classification based on PCA-Probabilistic neural network. Comput Dev Appl, 2011, 7: 1--3&
[12]
Valenti S, Rossi D, Dainotti A, et al. Reviewing Traffic Classification. Berlin: Springer, 2013.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Valenti S, Rossi D, Dainotti A, et al. Reviewing Traffic Classification. Berlin: Springer, 2013&
[13]
Pan W B, Cheng G, Guo X J, et al. Review and perspective on encrypted traffic identification research. J Commun, 2016, 37: 1--14.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Pan W B, Cheng G, Guo X J, et al. Review and perspective on encrypted traffic identification research. J Commun, 2016, 37: 1--14&
[14]
Yang Y, Kang C C, Gou G P, et al. TLS/SSL encrypted traffic classification with autoencoder and convolutional neural network. In: Proceedings of the 20th HPCC/16th SMARTCITY/4th DSS, Beijing, 2018. 362--369.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yang Y, Kang C C, Gou G P, et al. TLS/SSL encrypted traffic classification with autoencoder and convolutional neural network. In: Proceedings of the 20th HPCC/16th SMARTCITY/4th DSS, Beijing, 2018. 362--369&
[15]
Xiong g, Zhao Y, Cao Z G. Real-time classification for encrypted P2P traffic based on host behavior association. Chinese High Technol Lett, 2013, 23: 1008--1015.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Xiong g, Zhao Y, Cao Z G. Real-time classification for encrypted P2P traffic based on host behavior association. Chinese High Technol Lett, 2013, 23: 1008--1015&
[16]
Karagiannis T, Broido A, Brownlee N, et al. Is P2P dying or just hiding? In: Proceedings of IEEE Global Telecommunications Conference, San Diego, 2004. 1532--1538.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Karagiannis T, Broido A, Brownlee N, et al. Is P2P dying or just hiding? In: Proceedings of IEEE Global Telecommunications Conference, San Diego, 2004. 1532--1538&
[17]
Aceto G, Dainotti A, De Donato W, et al. PortLoad: taking the best of two worlds in traffic classification. In: Proceedings of INFOCOM IEEE Conference on Computer Communications Workshops, Naples, 2010.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Aceto G, Dainotti A, De Donato W, et al. PortLoad: taking the best of two worlds in traffic classification. In: Proceedings of INFOCOM IEEE Conference on Computer Communications Workshops, Naples, 2010&
[18]
Khakpour A R, Liu A X. High-speed flow nature identification. In: Proceedings of IEEE International Conference on Distributed Computing Systems, Montreal, 2009. 510--517.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Khakpour A R, Liu A X. High-speed flow nature identification. In: Proceedings of IEEE International Conference on Distributed Computing Systems, Montreal, 2009. 510--517&
[19]
Shi
H,
Li
H,
Zhang
D.
Efficient and robust feature extraction and selection for traffic classification.
Comput Networks,
2017, 119: 1-16
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Efficient and robust feature extraction and selection for traffic classification&author=Shi H&author=Li H&author=Zhang D&publication_year=2017&journal=Comput Networks&volume=119&pages=1-16
[20]
de la Hoz E, de la Hoz E, Ortiz A, et al. PCA filtering and probabilistic SOM for network intrusion detection. In: Proceedings of the 12th International Work-Conference on Artificial Neural Networks (IWANN), Puerto de la Cruz, 2015. 71--81.
Google Scholar
http://scholar.google.com/scholar_lookup?title=de la Hoz E, de la Hoz E, Ortiz A, et al. PCA filtering and probabilistic SOM for network intrusion detection. In: Proceedings of the 12th International Work-Conference on Artificial Neural Networks (IWANN), Puerto de la Cruz, 2015. 71--81&
[21]
Agrawal S, Sohi B S. Off-line analysis of internet traffic for accurate identification of P2P applications using neural networks. In: Proceedings of the 1st International Conference on Recent Advances in Information Technology (RAIT), Chandigarh, 2012. 431--435.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Agrawal S, Sohi B S. Off-line analysis of internet traffic for accurate identification of P2P applications using neural networks. In: Proceedings of the 1st International Conference on Recent Advances in Information Technology (RAIT), Chandigarh, 2012. 431--435&
[22]
Dong
S,
Li
R.
Traffic identification method based on multiple probabilistic neural network model.
Neural Comput Applic,
2019, 31: 473-487
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Traffic identification method based on multiple probabilistic neural network model&author=Dong S&author=Li R&publication_year=2019&journal=Neural Comput Applic&volume=31&pages=473-487
[23]
Ertam F, Galip A. Data classification with deep learning using tensorflow. In: Proceedings of the 2nd International Conference on Computer Science and Engineering, Elazig, 2017. 755--758.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ertam F, Galip A. Data classification with deep learning using tensorflow. In: Proceedings of the 2nd International Conference on Computer Science and Engineering, Elazig, 2017. 755--758&
[24]
Peng
L,
Yang
B,
Chen
Y.
Effective packet number for early stage internet traffic identification.
Neurocomputing,
2015, 156: 252-267
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Effective packet number for early stage internet traffic identification&author=Peng L&author=Yang B&author=Chen Y&publication_year=2015&journal=Neurocomputing&volume=156&pages=252-267
[25]
Wang Y, Zhou H Y, Feng H, et al. Network traffic classification method based on improved capsule neural network. J Commun, 2018, 1: 14--23.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wang Y, Zhou H Y, Feng H, et al. Network traffic classification method based on improved capsule neural network. J Commun, 2018, 1: 14--23&
[26]
Jain A V. Network traffic identification with convolutional neural networks. In: Proceedings of the 16th DASC/16th PICom/ 4th DataCom/ 3rd CyberSciTec, Rochester, 2018. 1001--1007.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Jain A V. Network traffic identification with convolutional neural networks. In: Proceedings of the 16th DASC/16th PICom/ 4th DataCom/ 3rd CyberSciTec, Rochester, 2018. 1001--1007&
[27]
Lopez-Martin
M,
Carro
B,
Sanchez-Esguevillas
A.
Network Traffic Classifier With Convolutional and Recurrent Neural Networks for Internet of Things.
IEEE Access,
2017, 5: 18042-18050
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Network Traffic Classifier With Convolutional and Recurrent Neural Networks for Internet of Things&author=Lopez-Martin M&author=Carro B&author=Sanchez-Esguevillas A&publication_year=2017&journal=IEEE Access&volume=5&pages=18042-18050
[28]
Hoque N, Bhattacharyya D K, Kalita J K. An alert analysis approach to DDoS attack detection. In: Proceedings of International Conference on Accessibility to Digital World, Assam, 2016. 33--38.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hoque N, Bhattacharyya D K, Kalita J K. An alert analysis approach to DDoS attack detection. In: Proceedings of International Conference on Accessibility to Digital World, Assam, 2016. 33--38&
[29]
Sze V, Chen Y H, Yang T J, et al. Efficient processing of deep neural networks: a tutorial and survey. In: Proceedings of the IEEE, Cambridge, 2017. 2295--2329.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sze V, Chen Y H, Yang T J, et al. Efficient processing of deep neural networks: a tutorial and survey. In: Proceedings of the IEEE, Cambridge, 2017. 2295--2329&
[30]
Sun
G,
Liang
L,
Chen
T.
Network traffic classification based on transfer learning.
Comput Electrical Eng,
2018, 69: 920-927
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Network traffic classification based on transfer learning&author=Sun G&author=Liang L&author=Chen T&publication_year=2018&journal=Comput Electrical Eng&volume=69&pages=920-927
[31]
Deng X G, Tian X M, Chen S, et al. Deep learning based nonlinear principal component analysis for industrial process fault detection. In: Proceedings of International Joint Conference on Neural Networks, Qingdao, 2017. 1237--1243.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Deng X G, Tian X M, Chen S, et al. Deep learning based nonlinear principal component analysis for industrial process fault detection. In: Proceedings of International Joint Conference on Neural Networks, Qingdao, 2017. 1237--1243&
[32]
Dias
K L,
Pongelupe
M A,
Caminhas
W M.
An innovative approach for real-time network traffic classification.
Comput Networks,
2019, 158: 143-157
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=An innovative approach for real-time network traffic classification&author=Dias K L&author=Pongelupe M A&author=Caminhas W M&publication_year=2019&journal=Comput Networks&volume=158&pages=143-157
[33]
Radford B J, Richardson B D, Davis S E. Sequence aggregation rules for anomaly detection in computer network traffic. Comput Sci, 2018, 8: 1--5.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Radford B J, Richardson B D, Davis S E. Sequence aggregation rules for anomaly detection in computer network traffic. Comput Sci, 2018, 8: 1--5&
[34]
Aurélien G. Hands-on Machine Learning with Scikit-learn $\&$ Tensorflow. Beijing: China Machine Press, 2018.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Aurélien G. Hands-on Machine Learning with Scikit-learn $\&$ Tensorflow. Beijing: China Machine Press, 2018&
[35]
Aceto
G,
Ciuonzo
D,
Montieri
A.
Multi-classification approaches for classifying mobile app traffic.
J Network Comput Appl,
2018, 103: 131-145
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Multi-classification approaches for classifying mobile app traffic&author=Aceto G&author=Ciuonzo D&author=Montieri A&publication_year=2018&journal=J Network Comput Appl&volume=103&pages=131-145
[36]
Kornycky
J,
Abdul-Hameed
O,
Kondoz
A.
Radio Frequency Traffic Classification Over WLAN.
IEEE/ACM Trans Networking,
2017, 25: 56-68
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Radio Frequency Traffic Classification Over WLAN&author=Kornycky J&author=Abdul-Hameed O&author=Kondoz A&publication_year=2017&journal=IEEE/ACM Trans Networking&volume=25&pages=56-68
[37]
Zhou F Y, Jin L P, Dong J. Review of convolution neural network. Chinese J Comput, 2017, 6: 1229--1251.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhou F Y, Jin L P, Dong J. Review of convolution neural network. Chinese J Comput, 2017, 6: 1229--1251&
[38]
Krizhevsky
A,
Sutskever
I,
Hinton
G E.
ImageNet classification with deep convolutional neural networks.
Commun ACM,
2017, 60: 84-90
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=ImageNet classification with deep convolutional neural networks&author=Krizhevsky A&author=Sutskever I&author=Hinton G E&publication_year=2017&journal=Commun ACM&volume=60&pages=84-90
[39]
Gao Y C, Liu N H, Zhang S. Relative indexed compressed sparse filter encoding format for hardware-oriented acceleration of deep convolutional neural networks. In: Proceedings of the 7th IEEE International Symposium on next-generation Electronics (ISNE), Taipei, 2018. 323--326.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gao Y C, Liu N H, Zhang S. Relative indexed compressed sparse filter encoding format for hardware-oriented acceleration of deep convolutional neural networks. In: Proceedings of the 7th IEEE International Symposium on next-generation Electronics (ISNE), Taipei, 2018. 323--326&