国家自然科学基金重点项目(U1831201)
国家重点研发计划(2017YFE0128200)
陕西省国际科技合作计划项目(2019KW-003)
江西省自然科学基金重点项目(2017ACB20019)
[1] Zuo T, Fang L, Zhao X J, et al. High temperature superconducting filter subsystem for next generation mobile communication systems. Sci Sin Inform, 2008, 51: 1384--1390. Google Scholar
[2] Li H, Zhang X Q, Zhang Q. The applications of HTS filters: exploration and practice. Sci Sin-Phys Mech Astron, 2012, 42: 767-792 CrossRef ADS Google Scholar
[3] Cui B, Zhang X Q, Sun L, et al. A high-performance narrowband high temperature superconducting filter. Chin Sci Bull, 2010, 55: 1367--1371. Google Scholar
[4] Kumar S, Rao I S. Design of differential mode wideband bandpass filter with common mode suppression using modified branch line coupler. In: Proceedings of Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials (ICSTM), 2015. 253--257. Google Scholar
[5] Teck Beng Lim , Lei Zhu . A Differential-Mode Wideband Bandpass Filter on Microstrip Line for UWB Application. IEEE Microw Wireless Compon Lett, 2009, 19: 632-634 CrossRef Google Scholar
[6] Liu H W, Liu F, Wang Z B, et al. Balanced dual-band superconducting filter using square ring loaded resonators with ultra-low insertion loss and CM noise suppression. Sci Sin Inform, 2020. doi: 10.1360/SSI-2019-0199. Google Scholar
[7] Lim T B, Zhu L. Highly Selective Differential-Mode Wideband Bandpass Filter for UWB Application. IEEE Microw Wireless Compon Lett, 2011, 21: 133-135 CrossRef Google Scholar
[8] Wang X H, Hu S, Cao Q Y. Differential broadband filter based on microstrip coupled line structures. Electron Lett, 2014, 50: 1069-1070 CrossRef ADS Google Scholar
[9] Zhu L, Chen D, Bu H. Differential bandpass filter on dual-mode ring resonator with slotline feeding scheme. Electron Lett, 2015, 51: 1512-1514 CrossRef ADS Google Scholar
[10] Chu Q X, Ouyang Z A, Qiu L L. Novel balanced filters with high common-mode suppression using slotline structure. In: Proceedings of Asia-Pacific Microwave Conference (APMC), 2015. Google Scholar
[11] Deng H, Zhao Y, He Y. High selectivity and common-mode suppression wideband balanced bandpass filter using slotline resonator. IET Microwaves Antennas Propagation, 2015, 9: 508-516 CrossRef Google Scholar
[12] Ouyang Z A, Chu Q X. Novel septuple-mode balanced filter with enhanced selectivity and extended upper-stopband using multi-mode slotline structure. In: Proceedings of IEEE MTT-S International Microwave Symposium (IMS), 2016. Google Scholar
[13] Cho Y H, Yun S W. Design of Balanced Dual-Band Bandpass Filters Using Asymmetrical Coupled Lines. IEEE Trans Microwave Theor Techn, 2013, 61: 2814-2820 CrossRef ADS Google Scholar
[14] Medina F, Boix R R, Lujambio A. Balanced bandpass filter based on magnetically coupled coplanar waveguide folded-stepped impedance resonators. Electron Lett, 2016, 60: 1229-1231 CrossRef ADS Google Scholar
[15] Fernandez-Prieto A, Lujambio A, Martel J. Simple and Compact Balanced Bandpass Filters Based on Magnetically Coupled Resonators. IEEE Trans Microwave Theor Techn, 2015, 63: 1843-1853 CrossRef ADS Google Scholar
[16] Haiwen Liu , Baoping Ren , Shen Li . High-Temperature Superconducting Bandpass Filter Using Asymmetric Stepped-Impedance Resonators With Wide-Stopband Performance. IEEE Trans Appl Supercond, 2015, 25: 1-6 CrossRef ADS Google Scholar
[17] Ouyang Z A and Chu Q X. Compact planar quasi-elliptic balanced filter with extended upper-stopband and high CM suppression. IEEE International Conference on Computational Electromagnetics, 2016, 284-286, doi: 10.1109/COMPEM.2016.7588566. Google Scholar
[18] Wu C H, Wang C H, Chen C H. Balanced Coupled-Resonator Bandpass Filters Using Multisection Resonators for Common-Mode Suppression and Stopband Extension. IEEE Trans Microwave Theor Techn, 2007, 55: 1756-1763 CrossRef ADS Google Scholar
[19] Olvera-Cervantes J L, Corona-Chavez A. Microstrip Balanced Bandpass Filter With Compact Size, Extended-Stopband and Common-Mode Noise Suppression. IEEE Microw Wireless Compon Lett, 2013, 23: 530-532 CrossRef Google Scholar
[20] Tao Yu , Chunguang Li , Fei Li . A Wideband Superconducting Filter Using Strong Coupling Resonators for Radio Astronomy Observatory. IEEE Trans Microwave Theor Techn, 2009, 57: 1783-1789 CrossRef ADS Google Scholar
[21] Wu C H, Wang C H, Chen C H. Stopband-Extended Balanced Bandpass Filter Using Coupled Stepped-Impedance Resonators. IEEE Microw Wireless Compon Lett, 2007, 17: 507-509 CrossRef Google Scholar
[22] Vélez P, Naqui J, Fernández-Prieto A, et al. Differential bandpass filters with common-mode suppression based on stepped impedance resonators (SIRs). In: Proceedings of Microwave Symposium Digest (IMS), 2013. Google Scholar
[23] Sans M, Selga J, Velez P. Automated Design of Common-Mode Suppressed Balanced Wideband Bandpass Filters by Means of Aggressive Space Mapping. IEEE Trans Microwave Theor Techn, 2015, 63: 3896-3908 CrossRef ADS Google Scholar
[24] Tang J, Liu H, Xu H X. Design of a Sixth-Order Switchable Superconducting Balanced Filter Using Asymmetric Coupled SIRs. IEEE Trans Appl Supercond, 2019, 29: 1-5 CrossRef ADS Google Scholar
[25] Hong J S, Lancaster M J. Microwave Filter for RF/Microwave Application. New York: Wiley, 2001. Google Scholar
[26] Li Y Q, Ji L Y, Gao W B. 6阶极窄带宽高温超导滤波器的研制. Sci Sin-Inf, 2013, 43: 1058-1064 CrossRef Google Scholar
[27] Li C, Zhang Q, Meng Q. A high-performance ultra-narrow bandpass HTS filter and its application in a wind-profiler radar system. Supercond Sci Technol, 2006, 19: S398-S402 CrossRef ADS Google Scholar
[28] Lu Gao , Liang Sun , Fei Li . 8-GHz Narrowband High-Temperature Superconducting Filter With High Selectivity and Flat Group Delay. IEEE Trans Microwave Theor Techn, 2009, 57: 1767-1773 CrossRef ADS Google Scholar
[29] Li S, Huang J, Meng Q. A 12-Pole Narrowband Highly Selective High-Temperature Superconducting Filter for the Application in the Third-Generation Wireless Communications. IEEE Trans Microwave Theor Techn, 2007, 55: 754-759 CrossRef ADS Google Scholar
[30] Li C G, Wang X, Wang J, et al. The high temperature superconducting filters and its application progress. Sci Sin Bull, 2017, 62: 4010--4024. Google Scholar
[31] Sagawa M, Makimoto M, Yamashita S. Geometrical structures and fundamental characteristics of microwave stepped-impedance resonators. IEEE Trans Microwave Theor Techn, 1997, 45: 1078-1085 CrossRef ADS Google Scholar
[32] Wang B, Wang X H, Wang B Z. Compact microstrip dual-band bandpass filter with multiple transmission zeros. J ElectroMagn Waves Appl, 2013, 27: 930-937 CrossRef Google Scholar
[33] Kuo J T, Hsu C L, Shih E. Compact Planar Quasi-Elliptic Function Filter With Inline Stepped-Impedance Resonators. IEEE Trans Microwave Theor Techn, 2007, 55: 1747-1755 CrossRef ADS Google Scholar
Figure 1
(Color online) (a) Basic SIR unit under balanced excitation; (b) differential-mode analysis circuit; (c) common-mode analysis circuit
Figure 2
(Color online) Simulated resonant frequencies distribution of the SIR with different impedance ratio. (a) DM excitation; (b) CM excitation
Figure 3
(Color online) (a) Mixed E$\&$M coupled SIR pair with different impedance ratio (type I); equivalent circuits of type I under differential-mode (b) and common-mode (c) excitation
Figure 4
(Color online) (a) DM coupling schematic of type I; (b) extracted DM and CM coupling coefficients $k_{a,b}^{d}$ and $k_{a,b}^{c}$ versus coupling gap $s_M$ with $s_E=0.2$ mm
Figure 5
(Color online) (a) E-dominant coupled SIR pair with large magnetic-coupling space (type II). Equivalent circuits of type II under differential-mode (b) and common-mode (c) excitation
Figure 6
(Color online) (a) DM coupling schematic of type II; (b) extracted DM and CM coupling coefficients $k_{b,c}^{d}$ and $k_{b,c}^{c}$ versus coupling gap $s_{E1}$ ($d_{E1}=1.18$ mm) and displacement distance $d_{E1}$ ($s~_{E1}=0.4$ mm)
Figure 7
(Color online) (a) M-dominant coupled SIR pair with large electric-coupling space (type III). Equivalent circuits of type III under differential-mode (b) and common-mode (c) excitation
Figure 8
(Color online) (a) DM coupling schematic of type III; (b) extracted DM and CM coupling coefficients $k_{c,c}^{d}$ and $k_{c,c}^{c}$ versus coupling gap $s_{M1}$
Figure 9
(Color online) Comparison of CM suppression of the three coupled SIR pairs
Figure 10
(Color online) (a) Proposed 6-order narrow-band Chebyshev balanced BPF; (b) the corresponding DM half-circuit coupling schematic
Figure 11
(Color online) (a) Simulated DM and CM external $Q$-factors against the tapped feedline position $d_t$ on the I/O resonators; (b) frequency responses of the 6th-order Chebyshev balanced BPF
Figure 12
(Color online) Proposed 6th-order narrow-band balanced BPF using cross coupling (unit: mm)
Figure 13
(Color online) (a) The corresponding cross coupling path I in Figure
Figure 14
(Color online) Variation of the TZs changed with different coupled line spaces $s_{\rm~CL}$
Figure 15
(Color online) (a) Photograph of the fabricated HTS Filter; (b) measurement and simulation results of the fabricated HTS filter
Figure 16
(Color online) (a) Extended view of DM frequency responses of the fabricated HTS filter; (b) extended view of CM frequency responses of the fabricated HTS filter
Coupling type | 1st DM harmonic | CM level@$f_{0}^{d}$ | Weak coupling area | Transmission path | Phase delay | |
Type I | E$\&$M | Dispersed | $-$30 dB | Around point $P$ | Dual | +180$^{\circ}$ |
Type II | E | 5.0$f_{0}^{d}$ | $-$30 dB | Increasing $s_{E1}$ | Single | $-$90$^{\circ}$ |
Type III | M | 5.0$f_{0}^{d}$ | $-$75 dB | Increasing $s_{E1}$ | Single | +90$^{\circ}$ |
$f~<~f_0^d$ | $f~>~f_0^d$ | |
makecell[c]Outer route$R_{a}~\rightarrow~J_{a,~b}~\rightarrow~R_{b}~\rightarrow~J_{b,~c}~\rightarrow~R_{c}\rightarrow~K_{c,~c}$ $\rightarrow~R_{c}~\rightarrow~J_{b,~c}~\rightarrow~R_{b}~\rightarrow~J_{a,~b}~\rightarrow~R_{a}$ | makecell[c]+90$^{\circ}$+90$^{\circ}$+ 90$^{\circ}$+90$^{\circ}$ +90$^{\circ}$$-$90$^{\circ}$+90$^{\circ}$+90$^{\circ}$ +90$^{\circ}$+90$^{\circ}$+90$^{\circ}$ =+810$^{\circ}$ | makecell[c]$-$90$^{\circ}$+90$^{\circ}$$-$90$^{\circ}$+90$^{\circ}$ $-$90$^{\circ}$$-$90$^{\circ}$$-$90$^{\circ}$+90$^{\circ}$$-$90$^{\circ}$ +90$^{\circ}$$-$90$^{\circ}$=$-$270$^{\circ}$ |
makecell[c]Inner route$R_{a}~\rightarrow~K_{a,~b}~\rightarrow~R_{b}~\rightarrow~J_{b,~c}~\rightarrow~R_{c}\rightarrow~K_{c,~c}$ $\rightarrow~R_{c}~\rightarrow~J_{b,~c}~\rightarrow~R_{b}~\rightarrow~K_{g,~b}~\rightarrow~R_{a}$ | makecell[c]+90$^{\circ}$$-$90$^{\circ}$+ 90$^{\circ}$+90$^{\circ}$ +90$^{\circ}$$-$90$^{\circ}$+90$^{\circ}$+90$^{\circ}$ +90$^{\circ}$$-$90$^{\circ}$+90$^{\circ}$=+450$^{\circ}$ | makecell[c]$-$90$^{\circ}$$-$90$^{\circ}$$-$90$^{\circ}$+90$^{\circ}$ $-$90$^{\circ}$$-$90$^{\circ}$$-$90$^{\circ}$+90$^{\circ}$ $-$90$^{\circ}$$-$90$^{\circ}$$-$90$^{\circ}$=$-$630$^{\circ}$ |
Phase difference | +360$^{\circ}$ | +360$^{\circ}$ |
Result | In-phase, none TZs | In-phase, none TZs |