logo

SCIENTIA SINICA Informationis, Volume 50 , Issue 9 : 1361(2020) https://doi.org/10.1360/SSI-2020-0093

Latest survey on optical fiber communication

Shaohua YU 1,2,3,*, Wei HE 1,2,3
More info
  • ReceivedApr 17, 2020
  • AcceptedJun 11, 2020
  • PublishedSep 23, 2020

Abstract

As one of the four most significant inventions since World War II, optical fiber communication has provided a foundation for the development of the information society, carrying more than 90% of the global data traffic. However, it is expected that it will encounter a “capacity crisis" in the next two decades. This paper focuses on the five development dimensions of optical fiber communications: ultra-high speed, ultra-large capacity, ultra-long distance, ultra-wideband flexibility, and ultra-powerful intelligence (5U). Based on a review of its development over the past 50 years, the paper provides a comprehensive review of the latest progress achieved in the past decade and presents a bold outlook on the evolutionary trends in the next decade or even two. This review hopes to provide a reference for researchers in related fields.


References

[1] Yu S H. Ten characteristics of network communication technology. People's Posts and Telecommunications News, 2018-08-16 (005). Google Scholar

[2] Yu S H. The Seven Technical Walls of Network Communications and the Primary Exploration of Trends. Study Opt Commun, 2018, 44: 1--7. Google Scholar

[3] Yu S H, Hu X Z. Research on the Leading Edge of Ultra High Speed, Ultra Large Capacity and Ultra Long Distance Optical Fiber Transmission System. Beijing: Science Press, 2014. Google Scholar

[4] Winzer P J. Scaling optical fiber networks: Challenges and solutions. Opt Photonics News, 2015, 26(3): 28--35. Google Scholar

[5] Luo M, Li C, Yang Q, et al. 100.3-Tb/s (375$\times~$267.27-Gb/s) C- and L-band transmission over 80-km SSMF using DFT-S OFDM 128-QAM. In: Proceedings of Asia Communications and Photonics Conference, Shanghai, 2014. Google Scholar

[6] Winzer P J. Making spatial multiplexing a reality. Nat Photon, 2014, 8: 345-348 CrossRef ADS Google Scholar

[7] Zhou X, Yu J, Huang M F, et al. 64-Tb/s (640$\times~$107-Gb/s) PDM-36QAM transmission over 320 km using both pre- and post-transmission digital equalization. In: Proceedings of 2010 Conference on Optical Fiber Communication (OFC/NFOEC), 2010. 1--3. Google Scholar

[8] Sano A, Masuda H, Kobayashi T, et al. 69.1Tb/s (432$\times~$171Gb/s) C- and extended L-band transmission over 240 km using PDM-16-QAM modulation and digital coherent detection. In: Proceedings of 2010 Conference on Optical Fiber Communication (OFC/NFOEC), 2010. 1--3. Google Scholar

[9] Qian D, Huang M, Ip E, et al. 101.7-Tb/s (370$\times~$294-Gb/s) PDM-128QAM-OFDM transmission over 3$\times~$55-km SSMF using pilot-based phase noise mitigation. In: Proceedings of 2010 Conference on Optical Fiber Communication (OFC/NFOEC), 2011. PDPB5. Google Scholar

[10] Sano A, Kobayashi T, Yamanaka S, et al. 102.3-Tb/s (224$\times~$548-Gb/s) C- and extended L-band all-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone. In: Proceedings of 2010 Conference on Optical Fiber Communication (OFC/NFOEC), 2012. 1--3. Google Scholar

[11] 徐至展 . 63-Tb/s (368183.3-Gb/s) C- and L-band all-Raman transmission over 160-km SSMF using PDM-OFDM-16QAM modulation. Chin Opt Lett, 2014, 12: 040601 CrossRef ADS Google Scholar

[12] Luo M, Li C, Yang Q, et al. 100.3-Tb/s(375$\times~$267.27-Gb/s) C- and L-band Transmission over 80-km SSMF Using DFT-S OFDM 128-QAM. In: Proceedings of Asia Communications and Photonics Conference, Shanghai, 2014. AF4B.1. Google Scholar

[13] Renaudier J, Carbo Meseguer A, Ghazisaeidi A, et al. First 100-nm continuous-band WDM transmission system with 115Tb/s transport over 100 km using novel ultrawideband semiconductor optical amplifiers. In: Proceedings of the 43rd Europeen Conference on Optical Communication, Gothenburg, 2017. 1--3. Google Scholar

[14] Ionescu M, Galdino L, Edwards A, et al. 91 nm C+L Hybrid Distributed Raman--Erbium-Doped Fibre Amplifier for High Capacity Subsea Transmission. In: Proceedings of the 44th Europeen Conference on Optical Communication, Roma, 2018. Mo4G.2. Google Scholar

[15] Hamaoka F, Minoguchi K, Sasai T, et al. 150.3-Tb/s ultra-wideband (S, C, and L Bands) single-mode fibre transmission over 40-km using 519Gb/s/A PDM-128QAM signals. In: Proceedings of the 44th Europeen Conference on Optical Communication, Roma, 2018. Mo4G.1. Google Scholar

[16] Sleiffer V A J M, Jung Y, Inan B, et al. Mode-division-multiplexed 3$\times~$112-Gb/s DP-QPSK transmission over 80-km few-mode fiber with inline MM-EDFA and blind DSP. In: Proceedings of the 38th European Conference and Exhibition on Optical Communications, Amsterdam, 2012. 1--3. Google Scholar

[17] Sleiffer V A J M, Leoni P, Jung Y, et al. 20$\times~$960-Gb/s MDM-DP-32QAM transmission over 60km FMF with inline MM-EDFA. In: Proceedings of the 39th European Conference and Exhibition on Optical Communications, 2013. 444--446. Google Scholar

[18] Ryf R, Randel S, Fontaine N K, et al. 32-bit/s/Hz spectral efficiency WDM transmission over 177-km few-mode fiber. In: Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), 2013. 1--3. Google Scholar

[19] Ip E, Li M J, Bennett K, et al. 146$\lambda~\times~$6$\times~$19-Gbaud wavelength- and mode-division multiplexed transmission over 10$\times~$50-km spans of few-mode fiber with a gain-equalized few-mode EDFA. In: Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), 2013. 790--797. Google Scholar

[20] M. Luo, X. Li, Q. Yang, et al. Transmission of 200Tb/s (375$\times~$3$\times~$178.125Gb/s) PDM-DFTS-OFDM-32QAM super channel over 1 km FMF. Frontiers of Optoelectronics, 2015, 8(4): 67--78. Google Scholar

[21] Ryf R, Chen H, Fontaine N K, et al. 10-Mode mode-multiplexed transmission over 125-km single-span multimode fiber. In: Proceedings of European Conference on Optical Communication (ECOC), 2015. 1--3. Google Scholar

[22] Soma D, Beppu S, Sumita S, et al. 402.7-Tb/s weakly-coupled 10-mode-multiplexed transmission using rate-adaptive PS PDM-16QAM WDM signals. In: Proceedings of European Conference on Optical Communication (ECOC), 2019. W.2.A.2. Google Scholar

[23] Ryf R, Sierra A, Essiambre R, et al. Coherent 1200-km 6$\times~$6 MIMO Mode- Multiplexed Transmission over 3-Core Microstructured Fiber. In: Proceedings of the 37th European Conference and Exhibition on Optical Communication, 2011. Th.13.C.1. Google Scholar

[24] Ryf R, Randel S, Gnauck A H. Mode-Division Multiplexing Over 96 km of Few-Mode Fiber Using Coherent 6$\,\times\,$6 MIMO Processing. J Lightwave Technol, 2012, 30: 521-531 CrossRef ADS Google Scholar

[25] Luo M, Qiu Y, Li X, et al. 560 Tbit/s coherent optical PDM DFT-s OFDM 32QAM signal transmission over 10 km single-mode 7 core fiber. Study Opt Commun, 2017, 2: 1--4. Google Scholar

[26] Igarashi K, Takeshima K, Tsuritani T. 1109-Tbit/s SDM transmission over 6,370 km using a full C-band seven-core EDFA. Opt Express, 2013, 21: 18053-18060 CrossRef ADS Google Scholar

[27] Puttnam B J, Luis R S, Klaus W, et al. 2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb. In: Proceedings of European Conference on Optical Communication (ECOC), 2015. 1--3. Google Scholar

[28] Benjamin J P, Ruben S L, Georg R, et al. 0.596 Pb/s S, C, L-Band Transmission in a 125$\mu~$m Diameter 4-core Fiber Using a Single Wideband Comb Source. In: Proceedings of Optical Fiber Communication Conference, San Diego, 2020. Th3H.5. Google Scholar

[29] Qian D Y, Ezra I, Huang M F, et al. 1.05Pb/s transmission with 109 b/s/Hz spectral efficiency using hybrid single- and few-mode cores. In: Proceedings of Frontiers in Optics 2012, 2012. FW6C.3. Google Scholar

[30] Soma D, Igarashi K, Wakayama Y, et al. 2.05 peta-bit/s super-Nyquist-WDM SDM transmission using 9.8-km 6-mode 19-core fiber in full C band. In: Proceedings of European Conference on Optical Communication (ECOC), 2015. PDP.3.2. Google Scholar

[31] Lu'ıs R S, Rademacher G, Puttnam B J, et al. 1.2 Pb/s transmission over a 160 $\mu~$m cladding, 4-core, 3-mode fiber, using 368 C+L band PDM-256-QAM channels. In: Proceedings of European Conference on Optical Communication (ECOC), 2018. 1--3. Google Scholar

[32] Soma D, Wakayama Y, Beppu S. et al. 10.16-Peta-bit/s Dense SDM/WDM Transmission over 6-Mode 19-Core Fiber across the C+L Band. J. Lightwave Technol., 2018, 36(6): 1362--1368. Google Scholar

[33] Georg R, Benjamin J P, Ruben S L, et al. 10.66 Peta-Bit/s Transmission over a 38-Core-Three-Mode Fiber. In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC), 2020. Th3H.1. Google Scholar

[34] Xia T J, Wellbrock G A, Huang Y K, et al. 10,000-km enhanced long-haul transmission of 1.15Tb/s superchannel using SSMF only. In: Proceedings of the 16th Opto-Electronics and Communications Conference, 2011. 758--759. Google Scholar

[35] Winzer P J, Essiambre R J. High-Speed and High-Capacity Optical Transmission Systems. In: High Spectral Density Optical Communication Technologies. Berlin: Springer, 2010. 103--127. Google Scholar

[36] Chbat M W, Spalter S. From 100G to 1000G: Is there a straight road ahead? In: Proceedings of European Conference on Optical Communication (ECOC), 2010. 1--16. Google Scholar

[37] Salsi M, Rios-Muller R, Renaudier J, et al. 38.75Tb/s transmission experiment over transoceanic distance. In: Proceedings of European Conference on Optical Communication (ECOC), 2013. 1--3. Google Scholar

[38] Foursa D G, Batshon H G, Zhang H, et al. 44.1 Tb/s transmission over 9,100km using coded modulation based on 16QAM signals at 4.9 bits/s/Hz spectral efficiency. In: Proceedings of European Conference on Optical Communication (ECOC), 2013. 1--3. Google Scholar

[39] Qian D, Huang M F, Zhang S. 30Tb/s C- and L-bands bidirectional transmission over 10,181km with 121km span length. Opt Express, 2013, 21: 14244-14250 CrossRef ADS Google Scholar

[40] Xia T J, Wellbrock G A, Tanaka A, et al. High Capacity Field Trials of 40.5Tb/s for LH Distance of 1,822km and 54.2Tb/s for Regional Distance of 634km. In: Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), 2013. 1--3. Google Scholar

[41] Georg R, Ruben S L, Benjamin J P, et al. 172Tb/s C+L Band Transmission over 2040km Strongly Coupled 3-Core Fiber. In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC), 2020. Th4C.5. Google Scholar

[42] Benjamin J P, Georg R, Ruben S L, et al. 8007 km C + L band transmission over MCF with 19-core cladding-pumped EDFA. In: Proceedings of European Conference on Optical Communication (ECOC), 2019. Tu.1.A.2. Google Scholar

[43] Turukhin A, Paskov M, Mazurczyk M V, et al. Demonstration of Potential 130.8 Tb/s Capacity in PowerEfficient SDM Transmission over 12,700 km Using Hybrid Micro-Assembly Based Amplifier Platform. In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC), 2019. M2I.4. Google Scholar

[44] Shaohua Yu et al, Recent progress in an`ultra-high speed, ultra-large capacity, ultra-long distance'optical transmission system (Invited Paper). Google Scholar

[45] Daojun Xue, Shaohua Yu, et al. Frontier research of ultra-high-speed ultra-large-capacity and ultra-long-haul optical transmission, Frontiers of Optoelectronics. 2016, 9(2): 123-137, DOI 10.1007/s12200-016-0612-5. Google Scholar

[46] Yang Q, He Z, Liu W, et al. 1-Tb/s large girth LDPC-coded coherent optical OFDM transmission over 1040-km standard single-mode fiber. In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC), 2011. 1--3. Google Scholar

[47] He Z X, Luo M, Li C, et al. 30.7Tbit/s Coherent Optical PDM-16QAM OFDM Signal Transmission over 80 km SSMF. Study Opt Commun, 2012, 6: 1--3. Google Scholar

[48] Li C, Djordjevic I, Luo M, et al. Ultra Long-Haul Transmission of a 1-Tb/s LDPC-Coded DFT-S OFDM-8PSK Superchannel over 12,160km. In: Proceedings of Asia Communications and Photonics Conference 2013, 2013. PDPB4. Google Scholar

[49] Yang Q, Xiao X, Li C, et al. 168$\times~$103Gb/s 25-GHz-Spaced C-band transmission over 2240km SSMF with improved nonlinearity using DFT-S OFDM-8PSK modulation. In: Proceedings of Asia Communications and Photonics Conference 2012, 2012. AF4B.3. Google Scholar

[50] Collings B. New devices enabling software-defined optical networks. IEEE Commun. Mag., 2013, 51(3): 66--71. Google Scholar

[51] Project acceptance conclusion of National High Technology Research and Development Program (863). Research and development of a new gridless, variable rate all-optical switching technology and experimental prototype (No.2012AA011302). May 31, 2015. Wuhan research institute of posts and telecommunications. Google Scholar

[52] Winzer P J, Neilson D T. From Scaling Disparities to Integrated Parallelism: A Decathlon for a Decade. J Lightwave Technol, 2017, 35: 1099-1115 CrossRef ADS Google Scholar

[53] Fabbri S J, Sygletos S, Perentos A. Experimental Implementation of an All-Optical Interferometric Drop, Add, and Extract Multiplexer for Superchannels. J Lightwave Technol, 2015, 33: 1351-1357 CrossRef ADS Google Scholar

[54] Kim Y-J, Simsarian J E, Choi N, et al. Cross-layer aware packet-optical link manage-ment in software-defined network operating system. In: Proceedings of Optical Fiber Communication Conference, San Diego, 2018. Th2A.31. Google Scholar

[55] Shaohua Yu. A New Paradigm of Future Network: Net-AI Agent and City-AI Agent. Study on Optical Communications, 2018, 210(06): 5-14. Google Scholar

[56] Yu S H, Zhang X Q. Information Optoelectronics. Beijing: Science Press, 2019. Google Scholar

[57] Yu S H, et al. Center for Electronics and Information Studies Chinese Academy of Engineering. Research on the Development of Electronic Information Engineering Technology in China (2018--2019), Special Theme 6 Network and Communication: 215-253, Special Theme 1 Microelectronic and Optoelectronics: 49--71. Google Scholar

[58] Chen L, Yu S H. Preliminary study on the trend of 6G mobile communication. Study Opt Commun, 2019, 4: 1--7. Google Scholar

[59] Liang Chen, Shaohua Yu. Preliminary Study on the Key Technologies of 6G Mobile Communication. Study on Optical Communications, 2019, (5): 1--7. Google Scholar

  • Figure 1

    (Color online) Products and research records of single carrier interface rates and WDM capacities

  • Figure 2

    (Color online) Key technologies promote continuous improvement of transmission capacity and distance

  • Figure 3

    (Color online) Five development directions of optical fiber communication

  • Figure 4

    (Color online) Five physical dimensions to improve the capacity of optical fiber communication system

  • Figure 5

    (Color online) The architecture and composition of flexible optical network

  • Figure 6

    (Color online) Evolution steps of ultra-strong intelligent optical network based on IP and optical cross layer cooperation

  • Figure 7

    (Color online) WDM$\times~$SDM resource matrix and array integration technology supporting SDM transmission

  • Figure 8

    (Color online) Possible future spatial switching node architecture for WDM$\times~$SDM networks

  • Table 1   Test records of ultra high speed and ultra large capacity transmission system in single mode optical fiber
    Capacity (Tb/s)Modulation formatBandSE (bit/s/Hz)Distance (km)InstitutionYear
    64107G-PDM-36QAMC, L8320Bell Lab2010
    69171.2G-PDM-16QAMC, L+6.4240NTT Lab2010
    101.7294G-PDM-128QAM-OFDMC, L11165NEC Lab2011
    102.3548G-PDM-64QAM-SC-FDMC, L+9.1240NTT Lab2012
    63183.3-PDM-OFDM-16QAMC, L6.85160WRI2013
    100.3320.7G-PDM-128QAM-DFTS OFDMC, L10.780WRI2014
    66Single carrier 2048QAMC, L15.3150Tohoku University2015
    115460G-PCS-64QAMS, C, L9.2100Bell Lab2017
    120385G-PDM-256QAMC, L10.99630Xtera Communications2018
    150.3PDM-128QAMS, C, L11.0540NTT Lab2018
  • Table 2   Test records of ultra high speed and ultra large capacity transmission system in few-mode optical fiber
    Capacity (Tb/s)Modulation formatModeSE (bit/s/Hz)Distance (km)Institution Year
    57.6PDM-QPSK312119TU Eindhoven2012
    24.6PDM-16QAM1232177Bell Lab2013
    21.6PDM-16QAM1543.6322.8Bell Lab2015
    115.2PDM-QPSK1029125Bell Lab2015
    200PDM-DFTS-OFDM-32QAM321.3751WRI2015
    266.1PDM-16QAM636.790.4KDDI Lab2018
    280PDM-64QAM33093.34NICT2018
    402.7PDM-16QAM104748KDDI Lab2019
  • Table 3   Test records of ultra high speed and ultra large capacity transmission system in multi-core optical fiber
    Capacity (Tb/s)Modulation formatCoreSE (bit/s/Hz)Distance (km)InstitutionYear
    112PDM-QPSK71476.8OFS Lab2011
    305PDM-QPSK1930.510.1NICT2012
    1010PDM-32QAM1291.452NTT Lab2012
    110PDM-QPSK722.46370KDDI Lab2013
    2150PDM-64QAM22215.631NICT2015
    560DFT-s PDM-OFDM-32QAM759.9510WRI2016
    1060PDM-16QAM-OFDM191131WRI2018
    596PDM-16/256QAM442.6754NICT2020
  • Table 4   Test records of ultra high speed and ultra large capacity transmission system in multi-core and few-mode optical fiber
    Capacity (Tb/s)Modulation formatMode/CoreSE (bit/s/Hz)Distance (km)InstitutionYear
    1050PDM-32QAM-OFDM2/121093NEC Lab2012
    2050DP-QPSK6/194569.8KDDI Lab2016
    1200PDM-256QAM3/4130.43.37NICT2018
    10160PDM-64QAM6/191099.911.31KDDI Lab2018
    10660PDM-64/256QAM3/381158.713NICT2020
  • Table 5   Test records of ultra long distance optical fiber transmission system
    Capacity (Tb/s)Distance (km)Capacity$\times~$Distance (Tb/s$\times~$km)FiberInstitutionYear
    306630198900Single-modeTE SubCom2012
    44.19100401310Single-modeTE SubCom2013
    549150494100Single-modeTE SubCom2014
    52.210230534000Single-modeTE SubCom2015
    140.773261025000Multi-core (7)KDDI Lab2015
    656600429000Single-modeBell Lab2016
    70.467600535496Single-modeTE SubCom2017
    51.517107881010Single-modeTE SubCom2017
    25.410285261239Single-modeBell Lab2018
    314.580072518201.5Multi-core (19)NICT2019
    130.8127001661160Multi-core (12)TE Subsea2019
    Communications LLC
    1722040350880Multi-core (3)NICT2020

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号