国家自然科学基金面上项目(6207071897)
国家自然科学区域联合基金重点项目(U19A2063)
Appendix 云渲染系统测试的设备环境与三维场景
[1] Zhao Q. Ten scientific and technical problems in virtual reality. Sci Sin-Inf, 2017, 47: 800-803 CrossRef Google Scholar
[2] Liu X, Xie N, Tang K. Lightweighting for Web3D visualization of large-scale BIM scenes in real-time. Graphical Model, 2016, 88: 40-56 CrossRef Google Scholar
[3] Chittaro L, Ranon R. Web3D technologies in learning, education and training. Comput Education, 2007, 49: 1-2 CrossRef Google Scholar
[4] Nah F F H. A study on tolerable waiting time: how long are Web users willing to wait?. Behaviour Inf Tech, 2004, 23: 153-163 CrossRef Google Scholar
[5] Shi S, Nahrstedt K, Campbell R. A real-time remote rendering system for interactive mobile graphics. ACM Trans Multimedia Comput Commun Appl, 2012, 8: 1-20 CrossRef Google Scholar
[6] Zhu M, Mondet S, Morin G, et al. Towards peer-assisted rendering in networked virtual environments. In: Proceedings of the 19th ACM International Conference on Multimedia, 2011. 183--192. Google Scholar
[7] Claypool M, Claypool K. Latency and player actions in online games. Commun ACM, 2006, 49: 40-45 CrossRef Google Scholar
[8] Rusinkiwicz S, Levoy M. QSplat: a multiresolution point rendering system for large meshes. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, 2000. 343--352. Google Scholar
[9] Sander P V,Snyder J, Gortler S J, et al. Texture mapping progressive meshes. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. ACM, 2001. 409--416. Google Scholar
[10] Chen Z, Bodenheimer B, Barnes J F. Extending progressive meshes for use over unreliable networks. In: Proceedings of International Conference on Multimedia and Expo, 2003, 3: 253--256. Google Scholar
[11] Falby J S, Zyda M J, Pratt D R. NPSNET: Hierarchical data structures for real-time three-dimensional visual simulation. Comput Graphics, 1993, 17: 65-69 CrossRef Google Scholar
[12] Wei W, Jia J Y. An incremental SMLAOI algorithm for progressive downloading large scale Web3D scenes. In: Proceedings of Web3D'2009. pp.55--60. Google Scholar
[13] Dcoret X, Durand F, Sillion F X, et al. Billboard clouds for extreme model simplification. In: Proceedings of the 23th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM Press, 2003. 689--696. Google Scholar
[14] Shade J, Gortler S, He L-W, et al. Layered depth images. In: Proceedings of SIGGRAPH 98 Conference Proceeding,1998. 231--242. Google Scholar
[15] Chang C F, Bishop G, Lastra A. LDI tree: a hierarchical representation for image-based rendering. In: Proceedings of SIGGRAPH 99, 1999. 291--298. Google Scholar
[16] Shi S, Kamali M, Nahrestedt K, et al. A high quality low-delay remote rendering system for 3D video. In: Proceedings of the International Conference on Multimedia. New York: ACM, 2010. 601--610. Google Scholar
[17] Crassin C, Luebke D, Mara M, et al. CloudLight: a system for amortizing indirect lighting in real-time rendering. J Comput Graph Tech, 2015, 4: 1--27. Google Scholar
[18] Cho K W, Seo J W, Kang J, et al. WingCache: application-aware caching for hybrid render farm. Int J Software Engineering and Its Appl, 2015, 9: 31--36 DOI: 10.14257/ijseia.2015.9.4.04. Google Scholar
[19] Zhao Z, Hwang K, Villeta J. Game cloud design with virtualized CPU/GPU servers and initial performance results. In: Proceedings of the 3rd Workshop on Scientific Cloud Computing. New York: ACM, 2012. 23--30. Google Scholar
[20] Shea R, Jiangchuan Liu R, Ngai E C H. Cloud gaming: architecture and performance. IEEE Network, 2013, 27: 16-21 CrossRef Google Scholar
[21] Huang C Y, Chen K T, Chen D Y. GamingAnywhere. ACM Trans Multimedia Comput Commun Appl, 2014, 10: 1-25 CrossRef Google Scholar
[22] Voglreiter P, Dokter M, Neff T. Shading atlasstreaming. In: Proceedings of SIGGRAPH Asia 2018 Technical Papers, 2018. 37: 199. Google Scholar
[23] Liu C, Ooi W T, Jia J. Cloud Baking. ACM Trans Multimedia Comput Commun Appl, 2018, 14: 1-20 CrossRef Google Scholar
[24] Bugeja K, Debattista K, Spina S. An asynchronousmethod for cloud-based rendering. Visual Comput,Springer Berlin Heidelberg (S0178-2789), 2018: 1-14. Google Scholar
[25] Wen L X, Jia J Y, Liang S. LPM: lightweight progressive meshes towards smooth transmis-sion of Web3D media over internet. In: Proceedings of the 13th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and its Applications in Industry. New York: ACM, 2014. 95--103. Google Scholar
[26] Wen L X, Xie N, Jia J Y. Client-driven strategy of large-scale scene streaming. In: Proceedings of the International Conference on Multimedia Modeling. Springer, 2016. 93--103. Google Scholar
[27] McMillan L Jr. An image-based approach to three-dimensional computer graphics. Dissertation for Ph.D. Degree. Chapel Hill: University of North Carolina at Chapel Hill, 1997. Google Scholar
[28] Mori Y, Fukushima N, Yendo T. View generation with 3D warping using depth information for FTV. Signal Processing-Image Communication, 2009, 24: 65-72 CrossRef Google Scholar
[29] Smolic A, Muller K, Dix K, et al. Intermediate viewinterpolation based onmultiviewvideo plus depth for advanced 3Dvideo systems. In: Prodeedings of the 15th IEEE International Conference on Image Processing, 2008. 2448--2451. Google Scholar
[30] Dachsbacher C, Stamminger M. Reflective shadow maps. In: Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games. New York: ACM, 2005. 203--231. Google Scholar
[31] Kaplanyan A, Dachsbacher C. Cascaded light propagation volumes for real-time indirect illumi-nation. In: Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. New York: ACM, 2010. 99--107. Google Scholar
[32] Crassin C, Neyret F, Sainz M. Interactive Indirect Illumination Using Voxel Cone Tracing. Comput Graphics Forum, 2011, 30: 1921-1930 CrossRef Google Scholar
Figure 1
(Color online) OpenGL, OpenGL ES and WebGL versions and their relationship
Figure 2
(Color online) Interactive latency of remote rendering
Figure 3
(Color online) Device performance-oriented collaborative cloud rendering system
Figure 4
(Color online) Overview of lighting and shadow rendering calculation in cloud rendering system
Figure 5
(Color online) Rendering scheduling strategy for low-power hardware devices
Figure 6
(Color online) Rendering scheduling strategy for high-power hardware devices
Figure 7
(Color online) Performance oflighting and shadow rendering algorithm in cloud rendering system
Figure 8
(Color online) Cloud-assisted rendering based on device power
Figure 9
(Color online) Final scene rendering performance
Hardware and | Web front-end | Web front-end | Cloud back-end |
operating system | with low-power | with high-power | |
CPU | Intel i3-6100 3.7G Hz | Intel i7-4720 2.6 GHz*2 | 2*Intel Xeon E5 2640 V4 2.4 GHz*10 |
GPU | Inter HD Graphics 520 | Nvidia Geforce GTX860 | Nvidia Quadro M6000 |
Memory | 4 G | 8 G | 128 G |
Operating system | Windows 10.0 | Windows 10.0 | Windows Server 2012 |
makecell[c]Rendering algorithm for lighting and shadow | makecell[c]Device configuration | makecell[c]Frame rate(FPS) | makecell[c]CPU load(%) | makecell[c]GPU load(%) | makecell[c]Memory load (M) |
Ambient | Web front-end with low-power | 46 | 32 | 71 | 931 |
Blinn phong | Web front-end with low-power | 24 | 43 | 92.4 | 1358 |
Blinn phong | Web front-end with high-power | 176 | 44.2 | 50.3 | 1019 |
Blinn phong | Cloud back-end | 355 | 4.1 | 23.5 | 881 |
Shadow map | Web front-end with low-power | 18 | 37 | 96.8 | 1021 |
Shadow map | Web front-end with high-power | 65 | 43 | 87.6 | 1434 |
Variance shadow map | Web front-end with high-power | 22 | 55 | 97.1 | 1056 |
Variance shadow map | Cloud back-end | 210 | 5.9 | 47.3 | 925 |
Screen space ambient occlusion | Web front-end with low-power | 23 | 47.1 | 96.5 | 994 |
Screen space ambient occlusion | Web front-end with high-power | 89 | 39.1 | 88.2 | 1033 |
Voxel accelerate ambient occlusion | Web front-end with high-power | 17 | 69 | 98.1 | 2143 |
Voxel accelerate ambient occlusion | Cloud back-end | 217 | 24.7 | 61.4 | 1142 |
Voxel cone tracing | Cloud back-end | 192 | 11.3 | 54.1 | 1071 |
Sponza | Gallery | Conference | Sibenik | Fireroom | |
Num of faces | 262267 | 998941 | 331179 | 75284 | 143173 |
Sizes in MB | 103.0 | 71.4 | 19.9 | 11.5 | 20.9 |
makecell[c]Device configuration | makecell[c]Direct lightingalgorithm | makecell[c]Shadow algorithm | makecell[c]Ambient occlusion algorithm | makecell[c]Indirect lighting algorithm | ||
| Ambient | No | No | No | ||
| Blinn phong | Shadow map | Screen space ambient occlusion | No | ||
Cloud back-end | Blinn phong | Variance shadow map | Voxel accelerate ambient occlusion | Voxel cone tracing |
makecell[c]Device configuration | makecell[c]Test item | makecell[c]Sponza | makecell[c]Gallery | makecell[c]Conference | makecell[c]Sibenik | makecell[c]Fireroom |
Web front-end with low-power | Frame rate (FPS) | 48 | 39 | 66 | 84 | 57 |
CPU load (%) | 34 | 67 | 51.2 | 57.4 | 43.1 | |
GPU load (%) | 69 | 85.2 | 71.3 | 64.1 | 81.4 | |
Memory load (M) | 972 | 1371 | 1013 | 1014 | 1131 | |
Cloud back-end | Frame rate (FPS) | 177 | 117 | 311 | 274 | 213 |
CPU load (%) | 37 | 43 | 39.2 | 41.1 | 44 | |
GPU load (%) | 25.4 | 37.1 | 24.8 | 33.8 | 35.7 | |
Memory load (M) | 892 | 993 | 741 | 912 | 714 |