logo

SCIENTIA SINICA Mathematica, https://doi.org/10.1360/SSM-2020-0072

The impact of imported cases on the control of COVID-19 in China

More info
  • ReceivedMar 11, 2020
  • AcceptedMay 8, 2020
  • PublishedJul 22, 2020

Abstract

To control the outbreak of COVID-19, the Chinese government has been carrying on a series of joint prevention and control measures. Current domestic situation shows an encouraging sign of improvement. However, the situation abroad is in a serious phase. Therefore, interdicting abroad inputs will be the key point at the next stage. In this paper, we establish a dynamical model incorporating with impulse to describe the transmission of SARS-CoV-2 and analyze the impact of overseas inputs on domestic prevention and control. Considering the imported cases from a typical neighboring country, we study the impacts of control measures under three different levels of control strategy. The simulations for the provinces with risk are given. The numerical experiments show that the current epidemic prevention policy can control the development of the epidemic well in the areas with less imported population; for the provinces with more imported population from the epidemic area, the effective screening and necessary isolation at immigration ports are crucial for preventing the further outbreak caused by imported cases.


Funded by

国家自然科学基金(41704116,11901234,11871242和11926104)

吉林省优秀青年基金(20180520093JH)

吉林省教育厅科学研究规划(JJKH20200933KJ)


References

[1] 央视新闻网 2020 年 1 月 20 日新闻. 韩国出现首例新型冠状病毒肺炎确诊病例. Http://m.news.cctv.com/2020/01/20/ARTIAYaMm0E9WcXc1KTBjROW200120.shtml 2020. Google Scholar

[2] 新华网 2020 年 2 月 28 日新闻. Http://www.xinhuanet.com/2020-02/28/c_1125639136.htm 2020. Google Scholar

[3] 新华网 2020 年 2 月 23 日新闻. Http://news.cctv.com/2020/02/23/ARTIVaVe0atPzwk1ncFRDJsR200223.shtml 2020. Google Scholar

[4] 世界卫生组织 (WHO) 网站. Https://www.who.int/ 2020. Google Scholar

[5] Yan Y, Chen Y, Liu K J. Modeling and prediction for the trend of outbreak of NCP based on a time-delay dynamic system (in Chinese). Sci Sin Math, 2020, 50: 385-392 CrossRef Google Scholar

[6] Wang X, Tang S Y, Chen Y, et al. When will be the resumption of work in Wuhan and its surrounding areas during COVID-19 epidemic? A data-driven network modeling analysis (in Chinese). Sci Sin Math, 2020, 50: 969--978. Google Scholar

[7] Wang X, Tang S Y, Chen Y. When will be the resumption of work in Wuhan and its surrounding areas during COVID-19 epidemic? A data-driven network modeling analysis (in Chinese). Sci Sin Math, 2020, 50: 969-978 CrossRef Google Scholar

[8] Tang B, Wang X, Li Q. Estimation of the Transmission Risk of the 2019-nCoV and its implication for public health interventions. J Comput Math, 2020, 9: 462 CrossRef Google Scholar

[9] Bogoch I, Watts A, Thomas-Bachli A. Pneumonia of unknown aetiology in Wuhan, China: Potential for international spread via commercial air travel. J Travel Med, 2020, 27: taaa008 CrossRef Google Scholar

[10] Wu J T, Leung K, Leung G M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. Lancet, 2020, 395: 689-697 CrossRef Google Scholar

[11] Chen T, Rui J, Wang Q, et al. A mathematical model for simulating the transmission of Wuhan novel coronavirus. bioRxiv:2020.01.19.911669 2020. Google Scholar

[12] Jia J W, Ding J, Liu S Y, et al. Modeling the control of COVID-19: Impact of policy interventions and meteorological factors. Electron J Differ Equ, 2020, 2020: 1--24. Google Scholar

  • Figure 1

  • Figure 2

  • Figure 3

  • Table 1   韩国来华航班始发地及周班次
    仁川 金浦 济州 釜山 大邱
    $P_1$ $P_2$ $P_3$ $P_4$ $P_5$ $P_6$ $P_1$ $P_2$ $P_3$ $P_4$ $P_5$ $P_1$ $P_2$ $P_3$ $P_4$ $P_5$ $P_1$ $P_2$ $P_3$ $P_1$
    北京市 31 30 30 27 27 1 12 12 5 5 5 3 2 2
    重庆市 1
    福建省 11 3 1 2 2 1
    广东省 17 14 9 8 5 1 1 1
    黑龙江省 15 9 9 5 5 1
    江苏省 10 7 4 4 4 1 2
    吉林省 27 22 22 16 16 1
    辽宁省 32 26 25 18 16 1 2 2
    陕西省 2 2 2 2 2 1
    山东省 80 70 55 22 17 1 7 7
    上海市 20 22 20 14 14 1 19 18 6 4 4 7 16 16 7 7 10 7 1 2
    四川省 3 2 2 2 2 1
    天津市 2 2 2 2 1
    浙江省 5 1

    (

  • Table 2   韩国来华轮船始发地及周班次
    仁川 平泽 群山
    $P_1$ $P_2$ $P_3$ $P_4$ $P_5$ $P_6$ $P_1$ $P_2$ $P_3$ $P_4$ $P_5$ $P_1$ $P_2$ $P_3$ $P_4$ $P_5$
    河北省 2 2 2 2 2 1
    江苏省 2 2 2 2 2 1
    辽宁省 28 23 21 15 13 1
    山东省 28 25 18 7 5 1 14 12 9 4 3 7 6 4 2 2
    天津市 14 14 14 14 14 1

  • Table 3   韩国来华各出发机场、港口乘客中各类人群占比参数估计
    仁川 金浦 济州 釜山 大邱 平泽 群山
    低输入风险 $E$ 0.30% 0.60% 0.30% 0.60% 0.98% 0.60% 0.30%
    $A$ 0.02% 0.04% 0.02% 0.04% 0.06% 0.04% 0.02%
    $I$ 0.04% 0.06% 0.04% 0.06% 0.08% 0.06% 0.04%
    高输入风险 $E$ 0.90% 1.80% 0.90% 1.80% 2.94% 1.80% 0.90%
    $A$ 0.03% 0.06% 0.03% 0.06% 0.09% 0.06% 0.03%
    $I$ 0.08% 0.12% 0.08% 0.12% 0.16% 0.12% 0.08%

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号