logo

More info
  • ReceivedDec 25, 2019
  • AcceptedApr 21, 2020
  • PublishedNov 11, 2020
PACS numbers

Abstract


Funded by

中国科学院战略性先导科技专项(XDA15360100,XDA15360102)


Acknowledgment

感谢张双南、卢方军、徐玉朋、王焕玉、刘聪展、何会林、董永伟、刘志东、田宗军、吴金杰、陈晓敏、朱光武、沈理达、邱明波、张飞、孟斌、文星、李陆、王于仨、侯懂杰、张承模、杨家卫、张爱梅、李正伟、张翼飞, 及GECAM卫星工程两总和各级领导: 王赤、吴季、孟新、荆涛、耿浩、林柯妡、余金培、张科科、黄佳、陈友梅、韩兴博、杨勇、王建平等同志在本项目立项和研制过程中给予的支持和帮助. 感谢北京玻璃研究院在GRD探测器溴化镧晶体封装件生产和供货方面给予的支持. 感谢西北稀有金属材料研究院在铍片供应方面给予的支持. 感谢山东航天电子技术研究所在探测器工程化、集成测试、试验等方面给予的支持.


References

[1] Abramovici A, Althouse W E, Drever R W P, et al. LIGO: The laser interferometer gravitational-wave observatory. Science, 1992, 256: 325-333 CrossRef PubMed ADS Google Scholar

[2] Shapiro S L, Teukolsky S A, Lightman A P. Black holes, white dwarfs, and neutron stars: The physics of compact objects. Phys Today, 1983, 36: 89-90 CrossRef ADS Google Scholar

[3] Abbott B P, Abbott R, Abbott T D, et al. Observation of gravitational waves from a binary black hole merger. Phys Rev Lett, 2016, 116: 061102 CrossRef PubMed ADS arXiv Google Scholar

[4] Abbott B P, Abbott R, Abbott T D, et al. GW170814: A three-detector observation of gravitational waves from a binary black hole coalescence. Phys Rev Lett, 2017, 119: 141101 CrossRef PubMed ADS arXiv Google Scholar

[5] Abbott B P, et al. ((LIGO Scientific Collaboration and Virgo Collaboration).). GW 170817: Observation of gravitational waves from a binary neutron star inspiral. Phys Rev Lett, 2017, 119: 161101 CrossRef PubMed ADS arXiv Google Scholar

[6] Abbott B P, Abbott R, Abbott T D, et al. Gravitational waves and gamma-rays from a binary neutron star merger: GW 170817 and GRB 170817A. Astrophys J, 2017, 848: L13 CrossRef ADS arXiv Google Scholar

[7] Kochanek C S, Piran T. Gravitational waves and gamma-ray bursts. Astrophys J, 1993, 417: L17 CrossRef ADS arXiv Google Scholar

[8] Abbott B P, Abbott R, Abbott T D, et al. Multi-messenger observations of a binary neutron star merger. Astrophys J, 2017, 848: L12 CrossRef ADS arXiv Google Scholar

[9] D’Avanzo1 P, Campana1 S, Salafia O S, et al. The evolution of the X-ray afterglow emission of GW 170817/GRB 170817A in XMM-Newton observations. arXiv: 1801.06164v2. Google Scholar

[10] Murguia-Berthier A, Ramirez-Ruiz E, Kilpatrick C D, et al. A neutron star binary merger model for GW170817/GRB 170817A/SSS17a. Astrophys J, 2017, 848: L34 CrossRef ADS arXiv Google Scholar

[11] Ruan J J, Nynka M, Haggard D, et al. Brightening X-ray emission from GW170817/GRB 170817A: Further evidence for an outflow. Astrophys J, 2018, 853: L4 CrossRef ADS arXiv Google Scholar

[12] Li T P, et al. ((The -HXMT team).). Insight-HXMT observations of the first binary neutron star merger GW 170817. Sci China-Phys Mech Astron, 2018, 61: 031011 CrossRef ADS arXiv Google Scholar

[13] Li T P. HXMT: A Chinese high-energy astrophysics mission. Nucl Phys B-Proc Suppl, 2007, 166: 131-139 CrossRef ADS Google Scholar

[14] Zhang S N, Santangelo A, Feroci M, et al. The enhanced X-ray timing and polarimetry mission—eXTP. Sci China-Phys Mech Astron, 2019, 62: 029502 CrossRef ADS arXiv Google Scholar

[15] Watts A L, Yu W F, Poutanen J, et al. Dense matter with eXTP. Sci China-Phys Mech Astron, 2019, 62: 029503 CrossRef ADS arXiv Google Scholar

[16] Rosa A D, Uttley P, Gou L J, et al. Accretion in strong field gravity with eXTP. Sci China-Phys Mech Astron, 2019, 62: 029504 CrossRef ADS arXiv Google Scholar

[17] Santangelo A, Zane S, Feng H, et al. Physics and astrophysics of strong magnetic field systems with eXTP. Sci China-Phys Mech Astron, 2019, 62: 029505 CrossRef ADS arXiv Google Scholar

[18] in ’t Zand J J M, Bozzo E, Qu J L, et al. Observatory science with eXTP. Sci China-Phys Mech Astron, 2019, 62: 029506 CrossRef ADS arXiv Google Scholar

[19] Meegan C, Lichti G, Bhat P N, et al. The Fermi gamma-ray burst monitor. Astrophys J, 2009, 702: 791-804 CrossRef ADS arXiv Google Scholar

[20] Tsurutani B T, Lakhina G S, Verkhoglyadova O P. Energetic electron (>10 keV) microburst precipitation, ~5–15 s X-ray pulsations, chorus, and wave-particle interactions: A review. J Geophys Res Space Phys, 2013, 118: 2296-2312 CrossRef ADS Google Scholar

[21] Zhang D, Li X, Xiong S, et al. Energy response of GECAM gamma-ray detector based on LaBr3:Ce and SiPM array. Nucl Instrum Methods Phys Res Sect A, 2019, 921: 8-13 CrossRef ADS Google Scholar

[22] Simo A-L. Hybrid positioning algorithms. In: Proceedings of the Digest of TISE Seminar. Institute of Mathematics, Tampere University of Technology, 2006. 43–46. Google Scholar

[23] Milbrath B D, Choate B J, Fast J E, et al. Comparison of LaBr3:Ce and NaI(Tl) scintillators for radio-isotope identification devices. In: Proceedings of the IEEE Nuclear Science Symposium Conference Record. Fajardo, 2005. 283–287. Google Scholar

[24] Liao J-Y, Luo Q, Zhu Y, et al. The localization method of GECAM and simulation analysis (in Chinese). Sci Sin-Phys Mech Astron, 2020, 50: 129510 [廖进元, 罗琦, 朱玥, 等. GECAM定位方法及模拟分析. 中国科学: 物理学 力学 天文学, 2020, 50: 129510]. Google Scholar

[25] Zhou X, Li X Q, Xie Y N, et al. Introduction to a calibration facility for hard X-ray detectors. Exp Astron, 2014, 38: 433-441 CrossRef ADS Google Scholar

[26] Manzo G, Giarrusso S, Santangelo A, et al. The high pressure gas scintillation proportional counter on-board the BeppoSAX X-ray astronomy satellite. Astron Astrophys Suppl Ser, 1997, 122: 341-356 CrossRef Google Scholar

[27] Liu C Z, Zhang Y F, Li X, et al. Instrumentation and methods for astrophysics. arXiv: 1910.04955. Google Scholar

  • Figure 1

    (a) Schematic diagram of the field of view of two satellites in orbit; (b) layout of the whole satellite.

  • Figure 2

    GECAM payload structure design (a) and physical photos of initial sample identification parts (b).

  • Figure 3

    GECAM payload system block diagram.

  • Figure 4

    Schematic diagram of GRD single structure design scheme.

  • Figure 5

    Ancillary Response File (ARF) of all-around peak in two kinds of crystal of one GRD with different thicknesses and incident angles. The incident angle of ARF of each color is from 0° (vertical incidence) to 80° respectively from top to bottom, and increases at 5° intervals.

  • Figure 6

    Redistribution Matrix File (RMF) at 30° incident for a single probe.

  • Figure 7

    The positioning accuracy distribution obtained by using three typical energy spectra of soft, medium and hard GRB as input is shown in eq. (1) and Table 1. (a)–(c) respectively correspond to the soft, medium and hard spectral indexes in Table 1. In each group of figures, the upper and lower figures correspond to two half day areas, respectively.

  • Figure 8

    The background energy spectrum of collimator schemes with different field sizes, in which different curves correspond to the half opening angles of the field of view (unit: degree), N corresponds to 90°, i.e. no collimator.

  • Figure 9

    Comparison between the location capabilities of GECAM (blue) and GBM (black). For both instruments, the dots are the locations, and the three circles from inside to outside are the 1σ, 2σ, 3σ confidence intervals, respectively. The red pentagram is the optical counterpart location of GW 170817 [24].

  • Figure 10

    The 5.9 keV pulse height histogram distribution of GRD measured at 25°C (a) and −25°C (b).

  • Figure 11

    (a) Curve of GRD pulse amplitude with temperature from −40°C to 30°C under the condition of fixed bias; (b) the change of 241Am peak value measured under different bias at 20°C under normal temperature. Smooth lines are polynomial fitting results.

  • Figure 12

    The relationship between energy and energy channel of GRD detector, (b) and (c) are the fine measurement results at the absorption edge. The red lines are the results of linear fitting. (a) 8–160 keV;(b) 8.3–24 keV; (c) 33.8–51.4 keV.

  • Figure 13

    Energy resolution of GRD at 8.1 keV–1.33 MeV. The red line is the fitting result.

  • Figure 14

    Schematic diagram of CPD single structure design scheme.

  • Figure 15

    Background spectrum of CPD embedded with calibration source. The Gaussian peak comes from the contribution of α particle of241Am source.

  • Figure 16

    Electron deposition energy spectra of plastic scintillators with different thicknesses. Different color curves correspond to different electron incident energies. (a) 6 mm; (b) 10 mm; (c) 20 mm.

  • Figure 17

    Detection efficiency of CPD for gamma rays and charged particles.

  • Figure 18

    Energy spectrum of 207Bi electron source and 137Cs gamma source measured by CPD. (a) 207Bi; (b) 137Cs.

  • Figure 19

    GECAM payload electrical connection diagram.

  • Figure 20

    The sky map orientation of each GRD and CPD, different colors correspond to different data acquisition boards.

  • Table 1   Definition of soft, medium and hard Band spectrum

    Band谱

    低能谱指数

    高能谱指数

    峰值能量 (keV)

    −1.9

    −3.7

    70

    −1.0

    −2.3

    230

    0.0

    −1.5

    1000

  • Table 2   signal to noise ratio of different collimator fields of view corresponding to typical GRB (θ=30°, φ=100°; nor=0.004841, index=−1.454; exp_t=22 s)

    准直器半张角 (°)

    弥散X射线本底

    总本底

    ARF

    信噪比

    备注

    50

    0.28

    0.3137

    0.3981

    15.18

    60

    0.38

    0.4116

    0.5159

    16.03

    70

    0.51

    0.5327

    0.6450

    16.64

    80

    0.68

    0.6963

    0.7782

    17.17

    90

    1.00

    1.0000

    1.0000

    17.23

    无准直器

  • Table 3   GRD performance parameters

    内容

    指标要求

    设计/实测指标

    探测器

    LaBr3晶体+SiPM

    LaBr3晶体+SiPM

    数量

    ≥20

    25

    探测面积(单体)

    ≥40 cm2

    45.36 cm2

    探测能区

    8 keV–2 MeV

    5 keV–5 MeV

    能量分辨率FWHM

    <18%@59.5 keV

    ≤13%@59.5 keV

    伽马射线探测效率

    >50%@8 keV

    ≥70%@8 keV

    死时间(正常事例)

    ≤5 µs

    4 µs

  • Table 4   Identify the burst mode of gamma ray bursts and space charged particles (GRD: 3σ), and the duration of the bursts is 2 s

    事件

    能谱

    GRD计数及误差 (8–5000 keV)

    CPD计数及误差 (0.3–5 MeV)

    CPD/GRD计数之比及其误差

    伽马暴

    Band软谱

    120.0±41.5

    0.008±5.7

    0.0001±0.05

    Band中谱

    120.0±41.5

    0.06 ±5.7

    0.0005±0.05

    Band硬谱

    120.0±41.5

    1.1±5.8

    0.0090±0.05

    空间荷电粒子事件

    (电子)

    Band软谱

    120.0±41.5

    32.5±8.0

    0.27±0.12

    Band中谱

    120.0±41.5

    35.5±8.2

    0.30±0.12

    Band硬谱

    120.0±41.5

    43.3±8.7

    0.36±0.14

    幂率谱指数−1

    120.0±41.5

    48.6±9.0

    0.40±0.16

    幂率谱指数−2

    120.0±41.5

    37.5±8.3

    0.31±0.13

  • Table 5   Performance indexes of CPD

    内容

    指标要求

    设计/实测指标

    探测器

    塑料闪烁体+SiPM

    塑料闪烁体+SiPM

    数量

    ≥5

    8

    塑闪单体尺寸

    ≥15 cm2

    16 cm2

    探测能区

    300 keV–5 MeV

    270 keV–5 MeV

    伽马射线探测效率

    <20%@8–2000 keV

    <7%@全能区

    死时间

    ≤5 µs

    3 µs

  • Table 6   Grouping of GRD and CPD corresponding to each data acquisition board

    数采板编号

    GRD分组

    CPD分组

    1

    1

    9

    11

    14

    16

    AC03

    AC05

    2

    2

    6

    13

    20

    25

    AC01

    AC04

    3

    3

    7

    12

    18

    23

    AC02

    AC06

    4

    4

    15

    17

    19

    22

    AC07

    5

    5

    8

    10

    21

    24

    AC08