References
[1]
Klitzing
K V,
Dorda
G,
Pepper
M.
New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance.
Phys Rev Lett,
1980, 45: 494-497
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance&author=Klitzing K V&author=Dorda G&author=Pepper M&publication_year=1980&journal=Phys Rev Lett&volume=45&pages=494-497
[2]
Laughlin
R B.
Quantized Hall conductivity in two dimensions.
Phys Rev B,
1981, 23: 5632-5633
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Quantized Hall conductivity in two dimensions&author=Laughlin R B&publication_year=1981&journal=Phys Rev B&volume=23&pages=5632-5633
[3]
Thouless
D J,
Kohmoto
M,
Nightingale
M P, et al.
Quantized Hall conductance in a two-dimensional periodic potential.
Phys Rev Lett,
1982, 49: 405-408
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Quantized Hall conductance in a two-dimensional periodic potential&author=Thouless D J&author=Kohmoto M&author=Nightingale M P&publication_year=1982&journal=Phys Rev Lett&volume=49&pages=405-408
[4]
Haldane F D M. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”. Phys Rev Lett, 1988, 61: 2015.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Haldane F D M. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”. Phys Rev Lett, 1988, 61: 2015&
[5]
Kane
C L,
Mele
E J.
Z2 topological order and the quantum spin hall effect.
Phys Rev Lett,
2005, 95: 146802
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Z2 topological order and the quantum spin hall effect&author=Kane C L&author=Mele E J&publication_year=2005&journal=Phys Rev Lett&volume=95&pages=146802
[6]
Bernevig
B A,
Hughes
T L,
Zhang
S C.
Quantum spin Hall effect and topological phase transition in HgTe quantum wells.
Science,
2006, 314: 1757-1761
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Quantum spin Hall effect and topological phase transition in HgTe quantum wells&author=Bernevig B A&author=Hughes T L&author=Zhang S C&publication_year=2006&journal=Science&volume=314&pages=1757-1761
[7]
Konig
M,
Wiedmann
S,
Brune
C, et al.
Quantum spin Hall insulator state in HgTe quantum wells.
Science,
2007, 318: 766-770
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Quantum spin Hall insulator state in HgTe quantum wells&author=Konig M&author=Wiedmann S&author=Brune C&publication_year=2007&journal=Science&volume=318&pages=766-770
[8]
Chang
C Z,
Zhang
J,
Feng
X, et al.
Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator.
Science,
2013, 340: 167-170
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator&author=Chang C Z&author=Zhang J&author=Feng X&publication_year=2013&journal=Science&volume=340&pages=167-170
[9]
Tokura
Y,
Yasuda
K,
Tsukazaki
A.
Magnetic topological insulators.
Nat Rev Phys,
2019, 1: 126-143
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Magnetic topological insulators&author=Tokura Y&author=Yasuda K&author=Tsukazaki A&publication_year=2019&journal=Nat Rev Phys&volume=1&pages=126-143
[10]
Hasan
M Z,
Kane
C L.
Colloquium: Topological insulators.
Rev Mod Phys,
2010, 82: 3045-3067
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Colloquium: Topological insulators&author=Hasan M Z&author=Kane C L&publication_year=2010&journal=Rev Mod Phys&volume=82&pages=3045-3067
[11]
Fu
L.
Topological crystalline insulators.
Phys Rev Lett,
2011, 106: 106802
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Topological crystalline insulators&author=Fu L&publication_year=2011&journal=Phys Rev Lett&volume=106&pages=106802
[12]
Wan
X,
Turner
A M,
Vishwanath
A, et al.
Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates.
Phys Rev B,
2011, 83: 205101
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates&author=Wan X&author=Turner A M&author=Vishwanath A&publication_year=2011&journal=Phys Rev B&volume=83&pages=205101
[13]
Nielsen
H B,
Ninomiya
M.
The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal.
Phys Lett B,
1983, 130: 389-396
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal&author=Nielsen H B&author=Ninomiya M&publication_year=1983&journal=Phys Lett B&volume=130&pages=389-396
[14]
Wang
Z,
Sun
Y,
Chen
X Q, et al.
Dirac semimetal and topological phase transitions in A3Bi(A=Na, K, Rb).
Phys Rev B,
2012, 85: 195320
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dirac semimetal and topological phase transitions in A3Bi(A=Na, K, Rb)&author=Wang Z&author=Sun Y&author=Chen X Q&publication_year=2012&journal=Phys Rev B&volume=85&pages=195320
[15]
Young
S M,
Zaheer
S,
Teo
J C Y, et al.
Dirac semimetal in three dimensions.
Phys Rev Lett,
2012, 108: 140405
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dirac semimetal in three dimensions&author=Young S M&author=Zaheer S&author=Teo J C Y&publication_year=2012&journal=Phys Rev Lett&volume=108&pages=140405
[16]
Huang
H,
Liu
J,
Vanderbilt
D, et al.
Topological nodal-line semimetals in alkaline-earth stannides, germanides, and silicides.
Phys Rev B,
2016, 93: 201114
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Topological nodal-line semimetals in alkaline-earth stannides, germanides, and silicides&author=Huang H&author=Liu J&author=Vanderbilt D&publication_year=2016&journal=Phys Rev B&volume=93&pages=201114
[17]
Chiu
C K,
Schnyder
A P.
Classification of reflection-symmetry-protected topological semimetals and nodal superconductors.
Phys Rev B,
2014, 90: 205136
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Classification of reflection-symmetry-protected topological semimetals and nodal superconductors&author=Chiu C K&author=Schnyder A P&publication_year=2014&journal=Phys Rev B&volume=90&pages=205136
[18]
Armitage
N P,
Mele
E J,
Vishwanath
A.
Weyl and Dirac semimetals in three-dimensional solids.
Rev Mod Phys,
2018, 90: 015001
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Weyl and Dirac semimetals in three-dimensional solids&author=Armitage N P&author=Mele E J&author=Vishwanath A&publication_year=2018&journal=Rev Mod Phys&volume=90&pages=015001
[19]
Long
Z,
Wang
Y,
Erukhimova
M, et al.
Magnetopolaritons in Weyl Semimetals in a strong magnetic field.
Phys Rev Lett,
2018, 120: 037403
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Magnetopolaritons in Weyl Semimetals in a strong magnetic field&author=Long Z&author=Wang Y&author=Erukhimova M&publication_year=2018&journal=Phys Rev Lett&volume=120&pages=037403
[20]
Guo
Z P,
Lu
P C,
Chen
T, et al.
High-pressure phases of Weyl semimetals NbP, NbAs, TaP, and TaAs.
Sci China-Phys Mech Astron,
2018, 61: 038211
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-pressure phases of Weyl semimetals NbP, NbAs, TaP, and TaAs&author=Guo Z P&author=Lu P C&author=Chen T&publication_year=2018&journal=Sci China-Phys Mech Astron&volume=61&pages=038211
[21]
Li
Q Y,
Lv
Y Y,
Wang
J H, et al.
Turning ZrTe5 into a semiconductor through atom intercalation.
Sci China-Phys Mech Astron,
2019, 62: 967812
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Turning ZrTe5 into a semiconductor through atom intercalation&author=Li Q Y&author=Lv Y Y&author=Wang J H&publication_year=2019&journal=Sci China-Phys Mech Astron&volume=62&pages=967812
[22]
Zhang
S F,
Zhang
C W,
Wang
P J, et al.
Low-energy electronic properties of a Weyl semimetal quantum dot.
Sci China-Phys Mech Astron,
2018, 61: 117811
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Low-energy electronic properties of a Weyl semimetal quantum dot&author=Zhang S F&author=Zhang C W&author=Wang P J&publication_year=2018&journal=Sci China-Phys Mech Astron&volume=61&pages=117811
[23]
Zirnbauer
M R.
Riemannian symmetric superspaces and their origin in random‐matrix theory.
J Math Phys,
1996, 37: 4986-5018
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Riemannian symmetric superspaces and their origin in random‐matrix theory&author=Zirnbauer M R&publication_year=1996&journal=J Math Phys&volume=37&pages=4986-5018
[24]
Altland
A,
Zirnbauer
M R.
Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures.
Phys Rev B,
1997, 55: 1142-1161
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures&author=Altland A&author=Zirnbauer M R&publication_year=1997&journal=Phys Rev B&volume=55&pages=1142-1161
[25]
Chiu
C K,
Teo
J C Y,
Schnyder
A P, et al.
Classification of topological quantum matter with symmetries.
Rev Mod Phys,
2016, 88: 035005
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Classification of topological quantum matter with symmetries&author=Chiu C K&author=Teo J C Y&author=Schnyder A P&publication_year=2016&journal=Rev Mod Phys&volume=88&pages=035005
[26]
Wang
Z,
Alexandradinata
A,
Cava
R J, et al.
Hourglass fermions.
Nature,
2016, 532: 189-194
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hourglass fermions&author=Wang Z&author=Alexandradinata A&author=Cava R J&publication_year=2016&journal=Nature&volume=532&pages=189-194
[27]
Bradlyn
B,
Elcoro
L,
Cano
J, et al.
Topological quantum chemistry.
Nature,
2017, 547: 298-305
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Topological quantum chemistry&author=Bradlyn B&author=Elcoro L&author=Cano J&publication_year=2017&journal=Nature&volume=547&pages=298-305
[28]
Alexandradinata
A,
Wang
Z,
Bernevig
B A.
Topological insulators from group cohomology.
Phys Rev X,
2016, 6: 021008
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Topological insulators from group cohomology&author=Alexandradinata A&author=Wang Z&author=Bernevig B A&publication_year=2016&journal=Phys Rev X&volume=6&pages=021008
[29]
Po
H C,
Vishwanath
A,
Watanabe
H.
Erratum: Symmetry-based indicators of band topology in the 230 space groups.
Nat Commun,
2017, 8: 931
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Erratum: Symmetry-based indicators of band topology in the 230 space groups&author=Po H C&author=Vishwanath A&author=Watanabe H&publication_year=2017&journal=Nat Commun&volume=8&pages=931
[30]
Watanabe
H,
Po
H C,
Vishwanath
A.
Structure and topology of band structures in the 1651 magnetic space groups.
Sci Adv,
2018, 4: eaat8685
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Structure and topology of band structures in the 1651 magnetic space groups&author=Watanabe H&author=Po H C&author=Vishwanath A&publication_year=2018&journal=Sci Adv&volume=4&pages=eaat8685
[31]
Tang
F,
Po
H C,
Vishwanath
A, et al.
Comprehensive search for topological materials using symmetry indicators.
Nature,
2019, 566: 486-489
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Comprehensive search for topological materials using symmetry indicators&author=Tang F&author=Po H C&author=Vishwanath A&publication_year=2019&journal=Nature&volume=566&pages=486-489
[32]
Zhang
T,
Jiang
Y,
Song
Z, et al.
Catalogue of topological electronic materials.
Nature,
2019, 566: 475-479
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Catalogue of topological electronic materials&author=Zhang T&author=Jiang Y&author=Song Z&publication_year=2019&journal=Nature&volume=566&pages=475-479
[33]
Vergniory
M G,
Elcoro
L,
Felser
C, et al.
A complete catalogue of high-quality topological materials.
Nature,
2019, 566: 480-485
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=A complete catalogue of high-quality topological materials&author=Vergniory M G&author=Elcoro L&author=Felser C&publication_year=2019&journal=Nature&volume=566&pages=480-485
[34]
Bradlyn
B,
Cano
J,
Wang
Z, et al.
Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals.
Science,
2016, 353: aaf5037
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals&author=Bradlyn B&author=Cano J&author=Wang Z&publication_year=2016&journal=Science&volume=353&pages=aaf5037
[35]
Burkov
A A,
Hook
M D,
Balents
L.
Topological nodal semimetals.
Phys Rev B,
2011, 84: 235126
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Topological nodal semimetals&author=Burkov A A&author=Hook M D&author=Balents L&publication_year=2011&journal=Phys Rev B&volume=84&pages=235126
[36]
Fang
C,
Weng
H,
Dai
X, et al.
Topological nodal line semimetals.
Chin Phys B,
2016, 25: 117106
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Topological nodal line semimetals&author=Fang C&author=Weng H&author=Dai X&publication_year=2016&journal=Chin Phys B&volume=25&pages=117106
[37]
Bradlyn
B,
Elcoro
L,
Vergniory
M G, et al.
Band connectivity for topological quantum chemistry: Band structures as a graph theory problem.
Phys Rev B,
2018, 97: 035138
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Band connectivity for topological quantum chemistry: Band structures as a graph theory problem&author=Bradlyn B&author=Elcoro L&author=Vergniory M G&publication_year=2018&journal=Phys Rev B&volume=97&pages=035138
[38]
Bzdušek
T,
Wu
Q S,
Rüegg
A, et al.
Nodal-chain metals.
Nature,
2016, 538: 75-78
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nodal-chain metals&author=Bzdušek T&author=Wu Q S&author=Rüegg A&publication_year=2016&journal=Nature&volume=538&pages=75-78
[39]
Fu
B,
Fan
X,
Ma
D, et al.
Hourglasslike nodal net semimetal in Ag2BiO3.
Phys Rev B,
2018, 98: 075146
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hourglasslike nodal net semimetal in Ag2BiO3&author=Fu B&author=Fan X&author=Ma D&publication_year=2018&journal=Phys Rev B&volume=98&pages=075146
[40]
Bradley C, Cracknell A. Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups. Oxford: Oxford University Press, 2009.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bradley C, Cracknell A. Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups. Oxford: Oxford University Press, 2009&
[41]
Soluyanov
A A,
Gresch
D,
Wang
Z, et al.
Type-II Weyl semimetals.
Nature,
2015, 527: 495-498
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Type-II Weyl semimetals&author=Soluyanov A A&author=Gresch D&author=Wang Z&publication_year=2015&journal=Nature&volume=527&pages=495-498
[42]
Li
S,
Yu
Z M,
Liu
Y, et al.
Type-II nodal loops: Theory and material realization.
Phys Rev B,
2017, 96: 081106
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Type-II nodal loops: Theory and material realization&author=Li S&author=Yu Z M&author=Liu Y&publication_year=2017&journal=Phys Rev B&volume=96&pages=081106
[43]
Yu
Z M,
Wu
W,
Sheng
X L, et al.
Quadratic and cubic nodal lines stabilized by crystalline symmetry.
Phys Rev B,
2019, 99: 121106
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Quadratic and cubic nodal lines stabilized by crystalline symmetry&author=Yu Z M&author=Wu W&author=Sheng X L&publication_year=2019&journal=Phys Rev B&volume=99&pages=121106
[44]
Ma
D S,
Zhou
J,
Fu
B, et al.
Mirror protected multiple nodal line semimetals and material realization.
Phys Rev B,
2018, 98: 201104
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mirror protected multiple nodal line semimetals and material realization&author=Ma D S&author=Zhou J&author=Fu B&publication_year=2018&journal=Phys Rev B&volume=98&pages=201104
[45]
Li X P, Deng K, Fu B, et al. Type-III Weyl semimetals and its materialization, arXiv: 1909.12178.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li X P, Deng K, Fu B, et al. Type-III Weyl semimetals and its materialization, arXiv: 1909.12178&
[46]
Wang
S S,
Liu
Y,
Yu
Z M, et al.
Hourglass Dirac chain metal in rhenium dioxide.
Nat Commun,
2017, 8: 1844
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hourglass Dirac chain metal in rhenium dioxide&author=Wang S S&author=Liu Y&author=Yu Z M&publication_year=2017&journal=Nat Commun&volume=8&pages=1844
[47]
Yu
R,
Wu
Q,
Fang
Z, et al.
From nodal chain semimetal to Weyl semimetal in HfC.
Phys Rev Lett,
2017, 119: 036401
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=From nodal chain semimetal to Weyl semimetal in HfC&author=Yu R&author=Wu Q&author=Fang Z&publication_year=2017&journal=Phys Rev Lett&volume=119&pages=036401
[48]
Weng
H,
Liang
Y,
Xu
Q, et al.
Topological node-line semimetal in three-dimensional graphene networks.
Phys Rev B,
2015, 92: 045108
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Topological node-line semimetal in three-dimensional graphene networks&author=Weng H&author=Liang Y&author=Xu Q&publication_year=2015&journal=Phys Rev B&volume=92&pages=045108
[49]
Chen
W,
Lu
H Z,
Hou
J M.
Topological semimetals with a double-helix nodal link.
Phys Rev B,
2017, 96: 041102
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Topological semimetals with a double-helix nodal link&author=Chen W&author=Lu H Z&author=Hou J M&publication_year=2017&journal=Phys Rev B&volume=96&pages=041102
[50]
Yan
Z,
Bi
R,
Shen
H, et al.
Nodal-link semimetals.
Phys Rev B,
2017, 96: 041103
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nodal-link semimetals&author=Yan Z&author=Bi R&author=Shen H&publication_year=2017&journal=Phys Rev B&volume=96&pages=041103
[51]
Chang
P Y,
Yee
C H.
Weyl-link semimetals.
Phys Rev B,
2017, 96: 081114
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Weyl-link semimetals&author=Chang P Y&author=Yee C H&publication_year=2017&journal=Phys Rev B&volume=96&pages=081114
[52]
Zhou
Y,
Xiong
F,
Wan
X, et al.
Hopf-link topological nodal-loop semimetals.
Phys Rev B,
2018, 97: 155140
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hopf-link topological nodal-loop semimetals&author=Zhou Y&author=Xiong F&author=Wan X&publication_year=2018&journal=Phys Rev B&volume=97&pages=155140
[53]
Bzdušek
T,
Sigrist
M.
Robust doubly charged nodal lines and nodal surfaces in centrosymmetric systems.
Phys Rev B,
2017, 96: 155105
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Robust doubly charged nodal lines and nodal surfaces in centrosymmetric systems&author=Bzdušek T&author=Sigrist M&publication_year=2017&journal=Phys Rev B&volume=96&pages=155105
[54]
Wu
W,
Liu
Y,
Li
S, et al.
Nodal surface semimetals: Theory and material realization.
Phys Rev B,
2018, 97: 115125
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nodal surface semimetals: Theory and material realization&author=Wu W&author=Liu Y&author=Li S&publication_year=2018&journal=Phys Rev B&volume=97&pages=115125
[55]
Türker
O,
Moroz
S.
Weyl nodal surfaces.
Phys Rev B,
2018, 97: 075120
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Weyl nodal surfaces&author=Türker O&author=Moroz S&publication_year=2018&journal=Phys Rev B&volume=97&pages=075120
[56]
Bian
G,
Chang
T R,
Zheng
H, et al.
Drumhead surface states and topological nodal-line fermions in TlTaSe2.
Phys Rev B,
2016, 93: 121113
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Drumhead surface states and topological nodal-line fermions in TlTaSe2&author=Bian G&author=Chang T R&author=Zheng H&publication_year=2016&journal=Phys Rev B&volume=93&pages=121113
[57]
Bian
G,
Chang
T R,
Sankar
R, et al.
Topological nodal-line fermions in spin-orbit metal PbTaSe2.
Nat Commun,
2016, 7: 10556
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Topological nodal-line fermions in spin-orbit metal PbTaSe2&author=Bian G&author=Chang T R&author=Sankar R&publication_year=2016&journal=Nat Commun&volume=7&pages=10556
[58]
Feng
B,
Fu
B,
Kasamatsu
S, et al.
Experimental realization of two-dimensional Dirac nodal line fermions in monolayer Cu2Si.
Nat Commun,
2017, 8: 1007
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Experimental realization of two-dimensional Dirac nodal line fermions in monolayer Cu2Si&author=Feng B&author=Fu B&author=Kasamatsu S&publication_year=2017&journal=Nat Commun&volume=8&pages=1007
[59]
Feng
B,
Zhang
R W,
Feng
Y, et al.
Discovery of Weyl nodal lines in a single-layer ferromagnet.
Phys Rev Lett,
2019, 123: 116401
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Discovery of Weyl nodal lines in a single-layer ferromagnet&author=Feng B&author=Zhang R W&author=Feng Y&publication_year=2019&journal=Phys Rev Lett&volume=123&pages=116401
[60]
Hu
J,
Tang
Z,
Liu
J, et al.
Evidence of topological nodal-line Fermions in ZrSiSe and ZrSiTe.
Phys Rev Lett,
2016, 117: 016602
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Evidence of topological nodal-line Fermions in ZrSiSe and ZrSiTe&author=Hu J&author=Tang Z&author=Liu J&publication_year=2016&journal=Phys Rev Lett&volume=117&pages=016602
[61]
Li
C,
Wang
C M,
Wan
B, et al.
Rules for phase shifts of quantum oscillations in topological nodal-line semimetals.
Phys Rev Lett,
2018, 120: 146602
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Rules for phase shifts of quantum oscillations in topological nodal-line semimetals&author=Li C&author=Wang C M&author=Wan B&publication_year=2018&journal=Phys Rev Lett&volume=120&pages=146602
[62]
Joynt
R.
Discrete scale invariance and ln(B) periodic quantum oscillations in topological semimetals.
Sci China-Phys Mech Astron,
2019, 62: 37431
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Discrete scale invariance and ln(B) periodic quantum oscillations in topological semimetals&author=Joynt R&publication_year=2019&journal=Sci China-Phys Mech Astron&volume=62&pages=37431
[63]
Li
R,
Li
J,
Wang
L, et al.
Underlying topological Dirac nodal line mechanism of the anomalously large electron-phonon coupling strength on a Be (0001) surface.
Phys Rev Lett,
2019, 123: 136802
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Underlying topological Dirac nodal line mechanism of the anomalously large electron-phonon coupling strength on a Be (0001) surface&author=Li R&author=Li J&author=Wang L&publication_year=2019&journal=Phys Rev Lett&volume=123&pages=136802
[64]
Li
J,
Xie
Q,
Liu
J, et al.
Phononic Weyl nodal straight lines in MgB2.
Phys Rev B,
2020, 101: 024301
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Phononic Weyl nodal straight lines in MgB2&author=Li J&author=Xie Q&author=Liu J&publication_year=2020&journal=Phys Rev B&volume=101&pages=024301
[65]
Li
J,
Wang
L,
Liu
J, et al.
Topological phonons in graphene.
Phys Rev B,
2020, 101: 081403
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Topological phonons in graphene&author=Li J&author=Wang L&author=Liu J&publication_year=2020&journal=Phys Rev B&volume=101&pages=081403
[66]
Chan
Y H,
Chiu
C K,
Chou
M Y, et al.
Ca3P2 and other topological semimetals with line nodes and drumhead surface states.
Phys Rev B,
2016, 93: 205132
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ca3P2 and other topological semimetals with line nodes and drumhead surface states&author=Chan Y H&author=Chiu C K&author=Chou M Y&publication_year=2016&journal=Phys Rev B&volume=93&pages=205132
[67]
Young
S M,
Kane
C L.
Dirac semimetals in two dimensions.
Phys Rev Lett,
2015, 115: 126803
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dirac semimetals in two dimensions&author=Young S M&author=Kane C L&publication_year=2015&journal=Phys Rev Lett&volume=115&pages=126803
[68]
Fang
C,
Chen
Y,
Kee
H Y, et al.
Topological nodal line semimetals with and without spin-orbital coupling.
Phys Rev B,
2015, 92: 081201
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Topological nodal line semimetals with and without spin-orbital coupling&author=Fang C&author=Chen Y&author=Kee H Y&publication_year=2015&journal=Phys Rev B&volume=92&pages=081201
[69]
Li
S,
Liu
Y,
Fu
B, et al.
Almost ideal nodal-loop semimetal in monoclinic CuTeO3 material.
Phys Rev B,
2018, 97: 245148
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Almost ideal nodal-loop semimetal in monoclinic CuTeO3 material&author=Li S&author=Liu Y&author=Fu B&publication_year=2018&journal=Phys Rev B&volume=97&pages=245148
[70]
Li
S,
Liu
Y,
Wang
S S, et al.
Nonsymmorphic-symmetry-protected hourglass Dirac loop, nodal line, and Dirac point in bulk and monolayer X3SiTe6(X = Ta, Nb).
Phys Rev B,
2018, 97: 045131
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nonsymmorphic-symmetry-protected hourglass Dirac loop, nodal line, and Dirac point in bulk and monolayer X3SiTe6(X = Ta, Nb)&author=Li S&author=Liu Y&author=Wang S S&publication_year=2018&journal=Phys Rev B&volume=97&pages=045131
[71]
Zhang
R W,
Liu
C C,
Ma
D S, et al.
Nodal-line semimetal states in the positive-electrode material of a lead-acid battery: Lead dioxide family and its derivatives.
Phys Rev B,
2018, 98: 035144
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nodal-line semimetal states in the positive-electrode material of a lead-acid battery: Lead dioxide family and its derivatives&author=Zhang R W&author=Liu C C&author=Ma D S&publication_year=2018&journal=Phys Rev B&volume=98&pages=035144
[72]
Zhang
R W,
Liu
C C,
Ma
D S, et al.
From node-line semimetals to large-gap quantum spin Hall states in a family of pentagonal group-IVA chalcogenide.
Phys Rev B,
2018, 97: 125312
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=From node-line semimetals to large-gap quantum spin Hall states in a family of pentagonal group-IVA chalcogenide&author=Zhang R W&author=Liu C C&author=Ma D S&publication_year=2018&journal=Phys Rev B&volume=97&pages=125312
[73]
Zhang
T T,
Yu
Z M,
Guo
W, et al.
From type-II triply degenerate nodal points and three-band nodal rings to type-II Dirac points in centrosymmetric zirconium oxide.
J Phys Chem Lett,
2017, 8: 5792-5797
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=From type-II triply degenerate nodal points and three-band nodal rings to type-II Dirac points in centrosymmetric zirconium oxide&author=Zhang T T&author=Yu Z M&author=Guo W&publication_year=2017&journal=J Phys Chem Lett&volume=8&pages=5792-5797
[74]
Li
R,
Ma
H,
Cheng
X, et al.
Dirac node lines in pure alkali earth metals.
Phys Rev Lett,
2016, 117: 096401
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dirac node lines in pure alkali earth metals&author=Li R&author=Ma H&author=Cheng X&publication_year=2016&journal=Phys Rev Lett&volume=117&pages=096401
[75]
Topp
A,
Queiroz
R,
Grüneis
A, et al.
Surface floating 2D bands in layered nonsymmorphic semimetals: ZrSiS and related compounds.
Phys Rev X,
2017, 7: 041073
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Surface floating 2D bands in layered nonsymmorphic semimetals: ZrSiS and related compounds&author=Topp A&author=Queiroz R&author=Grüneis A&publication_year=2017&journal=Phys Rev X&volume=7&pages=041073
[76]
Fu
B B,
Yi
C J,
Zhang
T T, et al.
Dirac nodal surfaces and nodal lines in ZrSiS.
Sci Adv,
2019, 5: eaau6459
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dirac nodal surfaces and nodal lines in ZrSiS&author=Fu B B&author=Yi C J&author=Zhang T T&publication_year=2019&journal=Sci Adv&volume=5&pages=eaau6459
[77]
Yang
L M,
Bačić
V,
Popov
I A, et al.
Two-dimensional Cu2Si monolayer with planar hexacoordinate copper and silicon bonding.
J Am Chem Soc,
2015, 137: 2757-2762
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Two-dimensional Cu2Si monolayer with planar hexacoordinate copper and silicon bonding&author=Yang L M&author=Bačić V&author=Popov I A&publication_year=2015&journal=J Am Chem Soc&volume=137&pages=2757-2762
[78]
Curson
N J,
Bullman
H G,
Buckland
J R, et al.
Interaction of silane with Cu(111): Surface alloy and molecular chemisorbed phases.
Phys Rev B,
1997, 55: 10819-10829
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Interaction of silane with Cu(111): Surface alloy and molecular chemisorbed phases&author=Curson N J&author=Bullman H G&author=Buckland J R&publication_year=1997&journal=Phys Rev B&volume=55&pages=10819-10829
[79]
Ménard
H,
Horn
A B,
Tear
S P.
Methylsilane on Cu(111), a STM study of the R30°-Cu2Si surface silicide.
Surf Sci,
2005, 585: 47-52
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Methylsilane on Cu(111), a STM study of the R30°-Cu2Si surface silicide&author=Ménard H&author=Horn A B&author=Tear S P&publication_year=2005&journal=Surf Sci&volume=585&pages=47-52
[80]
Fan
X,
Ma
D,
Fu
B, et al.
Cat’s-cradle-like Dirac semimetals in layer groups with multiple screw axes: Application to two-dimensional borophene and borophane.
Phys Rev B,
2018, 98: 195437
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cat’s-cradle-like Dirac semimetals in layer groups with multiple screw axes: Application to two-dimensional borophene and borophane&author=Fan X&author=Ma D&author=Fu B&publication_year=2018&journal=Phys Rev B&volume=98&pages=195437
[81]
Mostofi
A A,
Yates
J R,
Lee
Y S, et al.
Wannier90: A tool for obtaining maximally-localised wannier functions.
Comput Phys Commun,
2008, 178: 685-699
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wannier90: A tool for obtaining maximally-localised wannier functions&author=Mostofi A A&author=Yates J R&author=Lee Y S&publication_year=2008&journal=Comput Phys Commun&volume=178&pages=685-699
[82]
Lopez Sancho
M P,
Lopez Sancho
J M,
Sancho
J M L, et al.
Highly convergent schemes for the calculation of bulk and surface Green functions.
J Phys F-Met Phys,
1985, 15: 851-858
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Highly convergent schemes for the calculation of bulk and surface Green functions&author=Lopez Sancho M P&author=Lopez Sancho J M&author=Sancho J M L&publication_year=1985&journal=J Phys F-Met Phys&volume=15&pages=851-858
[83]
Deibele
S,
Jansen
M.
Bismuth in Ag2BiO3: Tetravalent or internally disproportionated?.
J Solid State Chem,
1999, 147: 117-121
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bismuth in Ag2BiO3: Tetravalent or internally disproportionated?&author=Deibele S&author=Jansen M&publication_year=1999&journal=J Solid State Chem&volume=147&pages=117-121
[84]
Muhlbauer
S,
Binz
B,
Jonietz
F, et al.
Skyrmion lattice in a chiral magnet.
Science,
2009, 323: 915-919
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Skyrmion lattice in a chiral magnet&author=Muhlbauer S&author=Binz B&author=Jonietz F&publication_year=2009&journal=Science&volume=323&pages=915-919
[85]
Wang
Z,
Vergniory
M G,
Kushwaha
S, et al.
Time-reversal-breaking Weyl Fermions in magnetic heusler alloys.
Phys Rev Lett,
2016, 117: 236401
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Time-reversal-breaking Weyl Fermions in magnetic heusler alloys&author=Wang Z&author=Vergniory M G&author=Kushwaha S&publication_year=2016&journal=Phys Rev Lett&volume=117&pages=236401
[86]
Huang
X,
Zhao
L,
Long
Y, et al.
Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs.
Phys Rev X,
2015, 5: 031023
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs&author=Huang X&author=Zhao L&author=Long Y&publication_year=2015&journal=Phys Rev X&volume=5&pages=031023
[87]
Hanke
J P,
Freimuth
F,
Niu
C, et al.
Mixed Weyl semimetals and low-dissipation magnetization control in insulators by spin-orbit torques.
Nat Commun,
2017, 8: 1479
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mixed Weyl semimetals and low-dissipation magnetization control in insulators by spin-orbit torques&author=Hanke J P&author=Freimuth F&author=Niu C&publication_year=2017&journal=Nat Commun&volume=8&pages=1479
[88]
Zhang
R W,
Zhang
Z,
Liu
C C, et al.
Nodal line spin-gapless semimetals and high-quality candidate materials.
Phys Rev Lett,
2020, 124: 016402
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nodal line spin-gapless semimetals and high-quality candidate materials&author=Zhang R W&author=Zhang Z&author=Liu C C&publication_year=2020&journal=Phys Rev Lett&volume=124&pages=016402
[89]
Wu
H,
Ma
D S,
Fu
B, et al.
Weyl nodal point-line Fermion in ferromagnetic Eu5Bi3.
J Phys Chem Lett,
2019, 10: 2508-2514
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Weyl nodal point-line Fermion in ferromagnetic Eu5Bi3&author=Wu H&author=Ma D S&author=Fu B&publication_year=2019&journal=J Phys Chem Lett&volume=10&pages=2508-2514
[90]
Zhang
Z,
Gao
Q,
Liu
C C, et al.
Magnetization-direction tunable nodal-line and Weyl phases.
Phys Rev B,
2018, 98: 121103
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Magnetization-direction tunable nodal-line and Weyl phases&author=Zhang Z&author=Gao Q&author=Liu C C&publication_year=2018&journal=Phys Rev B&volume=98&pages=121103
[91]
Zhou
X,
Zhang
R W,
Zhang
Z, et al.
Fully spin-polarized nodal loop semimetals in alkaline metal monochalcogenide monolayers.
J Phys Chem Lett,
2019, 10: 3101-3108
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fully spin-polarized nodal loop semimetals in alkaline metal monochalcogenide monolayers&author=Zhou X&author=Zhang R W&author=Zhang Z&publication_year=2019&journal=J Phys Chem Lett&volume=10&pages=3101-3108
[92]
Hepworth
M A,
Jack
K H,
Peacock
R D, et al.
The crystal structures of the trifluorides of iron, cobalt, ruthenium, rhodium, palladium and iridium.
Acta Cryst,
1957, 10: 63-69
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The crystal structures of the trifluorides of iron, cobalt, ruthenium, rhodium, palladium and iridium&author=Hepworth M A&author=Jack K H&author=Peacock R D&publication_year=1957&journal=Acta Cryst&volume=10&pages=63-69
[93]
Müller B G, Serafin M. The crystal structure of manganese tetrafluoride. Z Kristallogr, 1987, 42: 1102.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Müller B G, Serafin M. The crystal structure of manganese tetrafluoride. Z Kristallogr, 1987, 42: 1102&
[94]
Liu
G B,
Shan
W Y,
Yao
Y, et al.
Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides.
Phys Rev B,
2013, 88: 085433
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides&author=Liu G B&author=Shan W Y&author=Yao Y&publication_year=2013&journal=Phys Rev B&volume=88&pages=085433
[95]
Effenberger H, Mereiter Κ, Zemann J. Crystal structure refinements of magnesite, calcite, rhodochrosite, siderite, smithonite, and dolomite, with discussion of some aspects of the stereochemistry of calcite type carbonates. Z Kristallogr, 1981, 156: 233.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Effenberger H, Mereiter Κ, Zemann J. Crystal structure refinements of magnesite, calcite, rhodochrosite, siderite, smithonite, and dolomite, with discussion of some aspects of the stereochemistry of calcite type carbonates. Z Kristallogr, 1981, 156: 233&
[96]
Moreno
L C,
Valencia
J S,
Landínez Téllez
D A, et al.
Preparation and structural study of LaMnO3 magnetic material.
J Magn Magn Mater,
2008, 320: e19-e21
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Preparation and structural study of LaMnO3 magnetic material&author=Moreno L C&author=Valencia J S&author=Landínez Téllez D A&publication_year=2008&journal=J Magn Magn Mater&volume=320&pages=e19-e21
[97]
Huber M, Deiseroth H J. Crystal structure of titanium(III) borate, TiBO3. Z Kristallogr, 1995, 210: 685.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Huber M, Deiseroth H J. Crystal structure of titanium(III) borate, TiBO3. Z Kristallogr, 1995, 210: 685&
[98]
Kopnin
N B,
Heikkilä
T T,
Volovik
G E.
High-temperature surface superconductivity in topological flat-band systems.
Phys Rev B,
2011, 83: 220503
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-temperature surface superconductivity in topological flat-band systems&author=Kopnin N B&author=Heikkilä T T&author=Volovik G E&publication_year=2011&journal=Phys Rev B&volume=83&pages=220503
[99]
Chen
H,
Zhu
W,
Xiao
D, et al.
CO oxidation facilitated by robust surface states on Au-covered topological insulators.
Phys Rev Lett,
2011, 107: 056804
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=CO oxidation facilitated by robust surface states on Au-covered topological insulators&author=Chen H&author=Zhu W&author=Xiao D&publication_year=2011&journal=Phys Rev Lett&volume=107&pages=056804
[100]
Takayama
H,
Bohnen
K P,
Fulde
P.
Magnetic surface anisotropy of transition metals.
Phys Rev B,
1976, 14: 2287-2295
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Magnetic surface anisotropy of transition metals&author=Takayama H&author=Bohnen K P&author=Fulde P&publication_year=1976&journal=Phys Rev B&volume=14&pages=2287-2295
[101]
Kim
Y S,
Chung
Y C.
Magnetic and half-metallic properties of Cr-doped /spl beta/-SiC.
IEEE Trans Magn,
2005, 41: 2733-2735
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Magnetic and half-metallic properties of Cr-doped /spl beta/-SiC&author=Kim Y S&author=Chung Y C&publication_year=2005&journal=IEEE Trans Magn&volume=41&pages=2733-2735
[102]
Shoenberg D. Magnetic Oscillations in Metals. Cambridge: Cambridge University Press, 1984.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shoenberg D. Magnetic Oscillations in Metals. Cambridge: Cambridge University Press, 1984&
[103]
Mikitik
G P,
Sharlai
Y V.
Manifestation of Berry’s phase in metal physics.
Phys Rev Lett,
1999, 82: 2147-2150
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Manifestation of Berry’s phase in metal physics&author=Mikitik G P&author=Sharlai Y V&publication_year=1999&journal=Phys Rev Lett&volume=82&pages=2147-2150
[104]
Zumdick M F, Hoffmann R D, Pöttgen R. The intermetallic zirconium compounds ZrNiAl, ZrRhSn, and ZrPtGa-structural distortions and metal-metal bonding in Fe2P related compounds. Zeitschrift für Naturforschung B, 2014, 54: 45.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zumdick M F, Hoffmann R D, Pöttgen R. The intermetallic zirconium compounds ZrNiAl, ZrRhSn, and ZrPtGa-structural distortions and metal-metal bonding in Fe2P related compounds. Zeitschrift für Naturforschung B, 2014, 54: 45&
[105]
Mullen
K,
Uchoa
B,
Glatzhofer
D T.
Line of Dirac nodes in hyperhoneycomb lattices.
Phys Rev Lett,
2015, 115: 026403
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Line of Dirac nodes in hyperhoneycomb lattices&author=Mullen K&author=Uchoa B&author=Glatzhofer D T&publication_year=2015&journal=Phys Rev Lett&volume=115&pages=026403
[106]
O’Brien
T E,
Diez
M,
Beenakker
C W J.
Magnetic breakdown and Klein tunneling in a type-II Weyl semimetal.
Phys Rev Lett,
2016, 116: 236401
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Magnetic breakdown and Klein tunneling in a type-II Weyl semimetal&author=O’Brien T E&author=Diez M&author=Beenakker C W J&publication_year=2016&journal=Phys Rev Lett&volume=116&pages=236401
[107]
Chang
T R,
Pletikosic
I,
Kong
T, et al.
Realization of a type-II nodal-line semimetal in Mg3Bi2.
Adv Sci,
2019, 6: 1800897
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Realization of a type-II nodal-line semimetal in Mg3Bi2&author=Chang T R&author=Pletikosic I&author=Kong T&publication_year=2019&journal=Adv Sci&volume=6&pages=1800897