logo

SCIENTIA SINICA Technologica, Volume 49 , Issue 10 : 1133-1147(2019) https://doi.org/10.1360/SST-2019-0055

Strain effects on novel quantum materials

More info
  • ReceivedFeb 14, 2019
  • AcceptedMay 21, 2019
  • PublishedOct 8, 2019

Abstract


Funded by

国家自然科学基金(11734003,11574029)

国家重点研发计划(2016YFA0300600,2017YFB0701600)

中国科学院战略先导科技专项(B类)


References

[1] Kane C L, Mele E J. Quantum spin Hall effect in graphene. Phys Rev Lett, 2005, 95: 226801 CrossRef PubMed ADS Google Scholar

[2] Bernevig B A, Hughes T L, Zhang S C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science, 2006, 314: 1757-1761 CrossRef PubMed ADS Google Scholar

[3] König M, Wiedmann S, Brune C, et al. Quantum spin Hall insulator state in HgTe quantum wells. Science, 2007, 318: 766-770 CrossRef PubMed ADS arXiv Google Scholar

[4] Knez I, Du R R, Sullivan G. Evidence for helical edge modes in inverted InAs/GaSb quantum wells. Phys Rev Lett, 2011, 107: 136603 CrossRef PubMed ADS arXiv Google Scholar

[5] Hasan M Z, Kane C L. Colloquium: Topological insulators. Rev Mod Phys, 2010, 82: 3045-3067 CrossRef ADS arXiv Google Scholar

[6] Qi X L, Zhang S C. Topological insulators and superconductors. Rev Mod Phys, 2011, 83: 1057-1110 CrossRef ADS arXiv Google Scholar

[7] Wan X G, Turner A M, Vishwanath A, et al. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys Rev B, 2011, 83: 205101 CrossRef ADS arXiv Google Scholar

[8] Wang Z J, Sun Y, Chen X Q, et al. Dirac semimetal and topological phase transitions in A3Bi (A=Na, K, Rb). Phys Rev B, 2012, 85: 195320 CrossRef ADS Google Scholar

[9] Wang Z J, Weng H M, Wu Q S, et al. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys Rev B, 2013, 88: 125427 CrossRef ADS arXiv Google Scholar

[10] Liu Z K, Zhou B, Zhang Y, et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science, 2014, 343: 864-867 CrossRef PubMed ADS arXiv Google Scholar

[11] Liu Z K, Jiang J, Zhou B, et al. A stable three-dimensional topological Dirac semimetal Cd3As2. Nat Mater, 2014, 13: 677-681 CrossRef PubMed ADS Google Scholar

[12] Weng H, Fang C, Fang Z, et al. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys Rev X, 2015, 5: 011029 CrossRef ADS arXiv Google Scholar

[13] Lv B Q, Weng H M, Fu B B, et al. Experimental discovery of Weyl semimetal TaAs. Phys Rev X, 2015, 5: 031013 CrossRef ADS arXiv Google Scholar

[14] Huang S M, Xu S Y, Belopolski I, et al. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat Commun, 2015, 6: 7373 CrossRef PubMed ADS Google Scholar

[15] Yang S A. Dirac and Weyl materials: Fundamental aspects and some spintronics applications. SPIN, 2016, 06: 1640003 CrossRef ADS arXiv Google Scholar

[16] Feng B J, Fu B T, Kasamatsu S, et al. Experimental realization of two-dimensional Dirac nodal line fermions in monolayer Cu2Si. Nat Commun, 2017, 8: 1007 CrossRef PubMed ADS arXiv Google Scholar

[17] Li S, Yu Z M, Liu Y, et al. Type-II nodal loops: Theory and material realization. Phys Rev B, 2017, 96: 081106 CrossRef ADS arXiv Google Scholar

[18] Weng H M, Liang Y Y, Xu Q N, et al. Topological node-line semimetal in three-dimensional graphene networks. Phys Rev B, 2015, 92: 045108 CrossRef ADS arXiv Google Scholar

[19] Chen Y P, Xie Y, Yang S A, et al. Nanostructured carbon allotropes with Weyl-like loops and points. Nano Lett, 2015, 15: 6974-6978 CrossRef PubMed ADS Google Scholar

[20] Xie L S, Schoop L M, Seibel E M, et al. A new form of Ca3P2 with a ring of Dirac nodes. APL Mater, 2015, 3: 083602 CrossRef ADS Google Scholar

[21] Du Y P, Tang F, Wang D, et al. CaTe: A new topological node-line and Dirac semimetal. npj Quant Mater, 2017, 2: 3 CrossRef ADS arXiv Google Scholar

[22] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666-669 CrossRef PubMed ADS Google Scholar

[23] Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals. Proc Natl Acad Sci USA, 2005, 102: 10451-10453 CrossRef PubMed ADS Google Scholar

[24] Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotech, 2012, 7: 699-712 CrossRef PubMed ADS Google Scholar

[25] Butler S Z, Hollen S M, Cao L, et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano, 2013, 7: 2898-2926 CrossRef PubMed Google Scholar

[26] Xu M S, Liang T, Shi M M, et al. Graphene-like two-dimensional materials. Chem Rev, 2013, 113: 3766-3798 CrossRef PubMed Google Scholar

[27] Watanabe K, Taniguchi T, Kanda H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat Mater, 2004, 3: 404-409 CrossRef PubMed ADS Google Scholar

[28] Mak K F, Lee C, Hone J, et al. Atomically thin MoS2: A new direct-gap semiconductor. Phys Rev Lett, 2010, 105: 136805 CrossRef PubMed ADS arXiv Google Scholar

[29] Koenig S P, Doganov R A, Schmidt H, et al. Electric field effect in ultrathin black phosphorus. Appl Phys Lett, 2014, 104: 103106 CrossRef ADS arXiv Google Scholar

[30] Shi Y, Hamsen C, Jia X, et al. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett, 2010, 10: 4134-4139 CrossRef PubMed ADS Google Scholar

[31] Lee Y H, Zhang X Q, Zhang W, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv Mater, 2012, 24: 2320-2325 CrossRef PubMed Google Scholar

[32] Castellanos-Gomez A, Barkelid M, Goossens A M, et al. Laser-thinning of MoS2: On demand generation of a single-layer semiconductor. Nano Lett, 2012, 12: 3187-3192 CrossRef PubMed ADS arXiv Google Scholar

[33] Chang K, Liu J, Lin H, et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science, 2016, 353: 274-278 CrossRef PubMed ADS Google Scholar

[34] Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546: 270-273 CrossRef PubMed ADS arXiv Google Scholar

[35] Jiang L, Chawla N. Mechanical properties of Cu6Sn5 intermetallic by micropillar compression testing. Scripta Mater, 2010, 63: 480-483 CrossRef Google Scholar

[36] Hÿtch M, Houdellier F, Hüe F, et al. Nanoscale holographic interferometry for strain measurements in electronic devices. Nature, 2008, 453: 1086-1089 CrossRef PubMed ADS Google Scholar

[37] Cortijo A, Ferreirós Y, Landsteiner K, et al. Elastic gauge fields in Weyl semimetals. Phys Rev Lett, 2015, 115: 177202 CrossRef PubMed ADS arXiv Google Scholar

[38] Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457: 706-710 CrossRef PubMed ADS Google Scholar

[39] Bertolazzi S, Brivio J, Kis A. Stretching and breaking of ultrathin MoS2. ACS Nano, 2011, 5: 9703-9709 CrossRef PubMed Google Scholar

[40] Castellanos-Gomez A, Poot M, Steele G A, et al. Mechanical properties of freely suspended semiconducting graphene-like layers based on MoS2. Nanoscale Res Lett, 2012, 7: 233 CrossRef PubMed ADS Google Scholar

[41] Wei Q, Peng X. Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl Phys Lett, 2014, 104: 251915 CrossRef ADS arXiv Google Scholar

[42] Peng H L, Lai K, Kong D, et al. Aharonov-Bohm interference in topological insulator nanoribbons. Nat Mater, 2010, 9: 225-229 CrossRef PubMed ADS arXiv Google Scholar

[43] Yao Y G, Ye F, Qi X L, et al. Spin-orbit gap of graphene: First-principles calculations. Phys Rev B, 2007, 75: 041401 CrossRef ADS Google Scholar

[44] Liu C C, Feng W X, Yao Y G. Quantum spin Hall effect in silicene and two-dimensional germanium. Phys Rev Lett, 2011, 107: 076802 CrossRef PubMed ADS arXiv Google Scholar

[45] Liu C C, Jiang H, Yao Y G. Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys Rev B, 2011, 84: 195430 CrossRef ADS arXiv Google Scholar

[46] Xu Y, Yan B H, Zhang H J, et al. Large-gap quantum spin Hall insulators in tin films. Phys Rev Lett, 2013, 111: 136804 CrossRef PubMed ADS arXiv Google Scholar

[47] Qian X F, Liu J W, Fu L, et al. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science, 2014, 346: 1344-1347 CrossRef PubMed ADS Google Scholar

[48] Weng H, Dai X, Fang Z. Transition-metal pentatelluride ZrTe5 and HfTe5: A paradigm for large-gap quantum spin hall insulators. Phys Rev X, 2014, 4: 011002 CrossRef ADS arXiv Google Scholar

[49] Zhou J J, Feng W X, Liu C C, et al. Large-gap quantum spin Hall insulator in single layer bismuth monobromide Bi4Br4. Nano Lett, 2014, 14: 4767-4771 CrossRef PubMed ADS arXiv Google Scholar

[50] Song Z, Liu C C, Yang J, et al. Quantum spin Hall insulators and quantum valley Hall insulators of BiX/SbX (X=H, F, Cl and Br) monolayers with a record bulk band gap. NPG Asia Mater, 2014, 6: e147 CrossRef Google Scholar

[51] Liu C C, Guan S, Song Z, et al. Low-energy effective Hamiltonian for giant-gap quantum spin Hall insulators in honeycomb X-hydride/halide (X=N--Bi) monolayers. Phys Rev B, 2014, 90: 085431 CrossRef ADS arXiv Google Scholar

[52] Li X R, Zhang Z Y, Yao Y G, et al. High throughput screening for two-dimensional topological insulators. 2D Mater, 2018, 5: 045023 CrossRef ADS Google Scholar

[53] Volovik G E. The Universe in a Helium Droplet. Oxford: Oxford University Press, 2003. Google Scholar

[54] Horava P. Stability of Fermi surfaces and K theory. Phys Rev Lett, 2005, 95: 016405 CrossRef PubMed ADS Google Scholar

[55] Nielsen H B, Ninomiya M. The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal. Phys Lett B, 1983, 130: 389-396 CrossRef ADS Google Scholar

[56] Son D T, Yamamoto N. Berry curvature, triangle anomalies, and the chiral magnetic effect in Fermi liquids. Phys Rev Lett, 2012, 109: 181602 CrossRef PubMed ADS arXiv Google Scholar

[57] Liu C C, Zhou J J, Yao Y, et al. Weak topological insulators and composite Weyl semimetals: β-Bi4X4 (X=Br, I).. Phys Rev Lett, 2016, 116: 066801 CrossRef PubMed ADS arXiv Google Scholar

[58] Autès G, Isaeva A, Moreschini L, et al. A novel quasi-one-dimensional topological insulator in bismuth iodide β-Bi4I4. Nat Mater, 2016, 15: 154-158 CrossRef PubMed ADS arXiv Google Scholar

[59] Qi Y, Shi W, Werner P, et al. Pressure-induced superconductivity and topological quantum phase transitions in a quasi-one-dimensional topological insulator: Bi4I4. npj Quant Mater, 2018, 3: 4 CrossRef ADS arXiv Google Scholar

[60] Noguchi R, Takahashi T, Kuroda K, et al. A weak topological insulator state in quasi-one-dimensional bismuth iodide. Nature, 2019, 566: 518-522 CrossRef PubMed Google Scholar

[61] Guan S, Yu Z M, Liu Y, et al. Artificial gravity field, astrophysical analogues, and topological phase transitions in strained topological semimetals. npj Quant Mater, 2017, 2: 23 CrossRef ADS arXiv Google Scholar

[62] Cheng T P. Relativity, Gravitation and Cosmology. New York: Oxford University Press, 2010. Google Scholar

[63] He L P, Jia Y T, Zhang S J, et al. Pressure-induced superconductivity in the three-dimensional topological Dirac semimetal Cd3As2. npj Quant Mater, 2016, 1: 16014 CrossRef Google Scholar

[64] Chang T R, Pletikosic I, Kong T, et al. Realization of a type-II nodal-line semimetal in Mg3Bi2. Adv Sci, 2019, 6: 1800897 CrossRef PubMed Google Scholar

[65] Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotech, 2011, 6: 147-150 CrossRef PubMed ADS Google Scholar

[66] Wang H, Yu L L, Lee Y H, et al. Integrated circuits based on bilayer MoS2 transistors. Nano Lett, 2012, 12: 4674-4680 CrossRef PubMed ADS arXiv Google Scholar

[67] Bao W Z, Cai X H, Kim D, et al. High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Appl Phys Lett, 2013, 102: 042104 CrossRef ADS arXiv Google Scholar

[68] Das S, Chen H Y, Penumatcha A V, et al. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett, 2013, 13: 100-105 CrossRef PubMed ADS Google Scholar

[69] Ye J T, Zhang Y J, Akashi R, et al. Superconducting dome in a gate-tuned band insulator. Science, 2012, 338: 1193-1196 CrossRef PubMed ADS Google Scholar

[70] Matetskiy A V, Ichinokura S, Bondarenko L V, et al. Two-dimensional superconductor with a giant rashba effect: One-atom-layer Tl-Pb compound on Si(111). Phys Rev Lett, 2015, 115: 147003 CrossRef PubMed ADS Google Scholar

[71] Zhang H M, Sun Y, Li W, et al. Detection of a superconducting phase in a two-atom layer of hexagonal Ga film grown on semiconducting GaN(0001). Phys Rev Lett, 2015, 114: 107003 CrossRef PubMed ADS arXiv Google Scholar

[72] Kawamura H, Shirotani I, Tachikawa K. Anomalous superconductivity and pressure induced phase transitions in black phosphorus. Solid State Commun, 1985, 54: 775-778 CrossRef ADS Google Scholar

[73] Wittig J, Matthias B T. Superconducting phosphorus. Science, 1968, 160: 994-995 CrossRef PubMed ADS Google Scholar

[74] Shao D F, Lu W J, Lv H Y, et al. Electron-doped phosphorene: A potential monolayer superconductor. Europhys Lett, 2014, 108: 67004 CrossRef ADS arXiv Google Scholar

[75] Ge Y, Wan W, Feng W, et al. Effect of doping and strain modulations on electron transport in monolayer MoS2. Phys Rev B, 2014, 90: 035414 CrossRef ADS arXiv Google Scholar

[76] Li X D, Mullen J T, Jin Z H, et al. Intrinsic electrical transport properties of monolayer silicene and MoS2 from first principles. Phys Rev B, 2013, 87: 115418 CrossRef ADS arXiv Google Scholar

[77] Song Y, Dery H. Transport theory of monolayer transition-metal dichalcogenides through symmetry. Phys Rev Lett, 2013, 111: 026601 CrossRef PubMed ADS arXiv Google Scholar

[78] Chang C H, Fan X, Lin S H, et al. Orbital analysis of electronic structure and phonon dispersion in MoS2, MoSe2, WS2, and WSe2 monolayers under strain. Phys Rev B, 2013, 88: 195420 CrossRef ADS Google Scholar

[79] Ge Y, Wan W, Yang F, et al. The strain effect on superconductivity in phosphorene: A first-principles prediction. New J Phys, 2015, 17: 035008 CrossRef ADS Google Scholar

[80] Lee G H, Yu Y J, Cui X, et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano, 2013, 7: 7931-7936 CrossRef PubMed Google Scholar

[81] Geim A K, Grigorieva I V. Van der Waals heterostructures. Nature, 2013, 499: 419-425 CrossRef PubMed Google Scholar

[82] Eda G, Maier S A. Two-dimensional crystals: Managing light for optoelectronics. ACS Nano, 2013, 7: 5660-5665 CrossRef PubMed Google Scholar

[83] Gong C, Li L, Li Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546: 265-269 CrossRef PubMed ADS arXiv Google Scholar

[84] Fei Z, Huang B, Malinowski P, et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat Mater, 2018, 17: 778-782 CrossRef PubMed ADS arXiv Google Scholar

[85] Bonilla M, Kolekar S, Ma Y, et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat Nanotech, 2018, 13: 289-293 CrossRef PubMed ADS Google Scholar

[86] Feng B J, Zhang R W, Feng Y, et al. Discovery of Weyl nodal lines in a single-layer ferromagnet. Phys Rev Lett, 2019, 123: 116401. arXiv Google Scholar

[87] Liu F, You L, Seyler K L, et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat Commun, 2016, 7: 12357 CrossRef PubMed ADS Google Scholar

[88] Ding W, Zhu J, Wang Z, et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. Nat Commun, 2017, 8: 14956 CrossRef PubMed ADS Google Scholar

[89] Zhou Y, Wu D, Zhu Y, et al. Out-of-Plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett, 2017, 17: 5508-5513 CrossRef PubMed ADS arXiv Google Scholar

[90] Fei Z Y, Zhao W J, Palomaki T A, et al. Ferroelectric switching of a two-dimensional metal. Nature, 2018, 560: 336-339 CrossRef PubMed ADS Google Scholar

[91] Cao T, Li Z, Louie S G. Tunable magnetism and half-metallicity in hole-doped monolayer GaSe. Phys Rev Lett, 2015, 114: 236602 CrossRef PubMed ADS arXiv Google Scholar

[92] Li Z, Xu W, Yu Y, et al. Monolayer hexagonal arsenene with tunable electronic structures and magnetic properties via impurity doping. J Mater Chem C, 2016, 4: 362-370 CrossRef Google Scholar

[93] Seixas L, Rodin A S, Carvalho A, et al. Multiferroic two-dimensional materials. Phys Rev Lett, 2016, 116: 206803 CrossRef PubMed ADS arXiv Google Scholar

[94] Gong S, Wan W H, Guan S, et al. Tunable half-metallic magnetism in an atom-thin holey two-dimensional C2N monolayer. J Mater Chem C, 2017, 5: 8424-8430 CrossRef Google Scholar

[95] Fu B T, Feng W X, Zhou X D, et al. Effects of hole doping and strain on magnetism in buckled phosphorene and arsenene. 2D Mater, 2017, 4: 025107 CrossRef ADS Google Scholar

[96] Zhou X D, Feng W X, Li F, et al. Large magneto-optical effects in hole-doped blue phosphorene and gray arsenene. Nanoscale, 2017, 9: 17405-17414 CrossRef PubMed Google Scholar

[97] Li F, Zhou X D, Feng W X, et al. Thickness-dependent magneto-optical effects in hole-doped GaS and GaSe multilayers: A first-principles study. New J Phys, 2018, 20: 043048 CrossRef ADS Google Scholar

[98] Feng W X, Guo G Y, Yao Y G. Tunable magneto-optical effects in hole-doped group-IIIA metal-monochalcogenide monolayers. 2D Mater, 2017, 4: 015017 CrossRef ADS Google Scholar

[99] Wan W H, Liu C, Xiao W D, et al. Promising ferroelectricity in 2D group IV tellurides: A first-principles study. Appl Phys Lett, 2017, 111: 132904 CrossRef ADS Google Scholar

[100] Liu C, Wan W H, Ma J, et al. Robust ferroelectricity in two-dimensional SbN and BiP. Nanoscale, 2018, 10: 7984-7990 CrossRef PubMed Google Scholar

[101] Guan S, Liu C, Lu Y H, et al. Tunable ferroelectricity and anisotropic electric transport in monolayer β-GeSe. Phys Rev B, 2018, 97: 144104 CrossRef ADS arXiv Google Scholar

[102] Li J, Shan Z W, Ma E. Elastic strain engineering for unprecedented materials properties. MRS Bull, 2018, 39: 108-114 CrossRef Google Scholar

[103] Bedell S W, Khakifirooz A, Sadana D K. Strain scaling for CMOS. MRS Bull, 2014, 39: 131-137 CrossRef Google Scholar

[104] Dai Z, Liu L, Zhang Z. Strain engineering of 2D materials: Issues and opportunities at the interface. Adv Mater, 2019, 3: 1805417 CrossRef PubMed Google Scholar

  • 图 1

    (网络版彩图)Bi4Br4的结构和带隙随应力变化图. (a) 三维Bi4Br4的晶体结构图; (b) 单层Bi4Br4结构图; (c) 沿着b轴拓展的一维分子链; (d) 单轴应力调控带隙变化图示. 图片摘自文献[49]

  • 图 2

    (网络版彩图)不同单轴应变下Na3Bi的能带图. (a) 在c方向单轴应变下的Na3Bi示意图; (b) Na3Bi的能带图; (c)~(e) Г点附近在c方向不同单轴应变下Na3Bi的能带图, 分别对应应变为0%, −3%, −7%的情况. 图片摘自文献[61]

  • 图 3

    (网络版彩图) (a) 模拟白洞视界(上半部分)和黑洞视界(下半部分)的示意图. 箭头代表准粒子在相应区域内的运动方向. (b) Na3Bi中有效折射率n随应变的变化关系. (c)和(d)是类比引力透镜效应的图示. 其中白色曲线指的是准粒子在平面内的轨迹. 颜色表示应变大小. 图片摘自文献[61]

  • 图 4

    (网络版彩图) K4P3晶体结构以及能带图. (a) K4P3的晶体结构; (b) K4P3的布里渊区; (c) K4P3的能带结构; (d) 第一性原理计算K4P3(110)面上费米面附近的两个能级之差, 颜色条代表差值的大小, 其中白色线条(差值为零)即为节线. 图片摘自文献[17]

  • 图 5

    (网络版彩图)剪切应变下节线(白色线条)的演化情况. (a) 55°夹角; (b) 65.5°夹角; (c) 67°夹角. 图片摘自文献[17]

  • 图 6

    (网络版彩图)应变调控单层MoS2中声子限制的电子输运图. 图片摘自文献[75]

  • 图 7

    (网络版彩图)应变调控单层黑磷的超导电性. 图片摘自文献[79]

  • 图 8

    (网络版彩图) (a) h2D-C2N能带和态密度图; (b) 磁矩和自旋极化能随掺杂密度变化图; (c) 电子掺杂为6×1013 cm−2时自旋分辨的态密度图. 图片摘自文献[94]

  • 图 9

    (网络版彩图) (a) 在zigzag方向施加8%应变下的C2N能带图; (b) 在不同掺杂浓度下磁矩随单轴应变变化关系图. 图片摘自文献[94]

  • 图 10

    (网络版彩图) (a) 蓝磷烯价带顶的二维能带图; (b) 态密度图; (c) 在不同掺杂浓度下磁矩随双轴应变变化关系图. 图片摘自文献[95]

  • 图 11

    (网络版彩图)单层GaS在空穴掺杂数hole=0.23下磁矩(a)和磁光克尔角(b)随双轴应变的变化关系图. 图片摘自文献[97]

  • 图 12

    (网络版彩图)应变下单层GeTe和SnTe的电极化强度PS和翻转势垒Eb的变化关系图. (a) GeTe的电极化强度PS; (b) GeTe的翻转势垒Eb; (c) SnTe的电极化强度PS; (d) SnTe的翻转势垒Eb. 图片摘自文献[99]