logo

SCIENTIA SINICA Technologica, Volume 49 , Issue 10 : 1121-1132(2019) https://doi.org/10.1360/SST-2019-0062

Advances in the novel fabrication methods for thermoset composites

More info
  • ReceivedFeb 17, 2019
  • AcceptedJun 10, 2019
  • PublishedSep 9, 2019

Abstract


Funded by

国家自然科学基金(11732012)


References

[1] Das S, Warren J, West D, et al. Global carbon fiber composites supply chain competitiveness analysis. Technical Report. National Renewable Energy Lab, Golden, CO (United States), 2016. 1–99. Google Scholar

[2] Li Q, Chen L, Gadinski M R, et al. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature, 2015, 523: 576-579 CrossRef PubMed ADS Google Scholar

[3] Oliveux G, Dandy L O, Leeke G A. Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties. Prog Mater Sci, 2015, 72: 61-99 CrossRef Google Scholar

[4] Yuan Y, Sun Y, Yan S, et al. Multiply fully recyclable carbon fibre reinforced heat-resistant covalent thermosetting advanced composites. Nat Commun, 2017, 8: 14657 CrossRef PubMed ADS Google Scholar

[5] Thoppul S D, Finegan J, Gibson R F. Mechanics of mechanically fastened joints in polymer-matrix composite structures—A review. Compos Sci Tech, 2009, 69: 301-329 CrossRef Google Scholar

[6] Budhe S, Banea M D, de Barros S, et al. An updated review of adhesively bonded joints in composite materials. Int J Adhes Adhes, 2017, 72: 30-42 CrossRef Google Scholar

[7] Eckel Z C, Zhou C, Martin J H, et al. Additive manufacturing of polymer-derived ceramics. Science, 2016, 351: 58-62 CrossRef PubMed ADS Google Scholar

[8] Zheng X, Lee H, Weisgraber T H, et al. Ultralight, ultrastiff mechanical metamaterials. Science, 2014, 344: 1373-1377 CrossRef PubMed ADS Google Scholar

[9] Ding Z, Yuan C, Peng X, et al. Direct 4D printing via active composite materials. Sci Adv, 2017, 3: e1602890 CrossRef PubMed ADS Google Scholar

[10] Compton B G, Lewis J A. 3D-printing of lightweight cellular composites. Adv Mater, 2014, 26: 5930-5935 CrossRef PubMed Google Scholar

[11] Zou W, Dong J, Luo Y, et al. Dynamic covalent polymer networks: From old chemistry to modern day innovations. Adv Mater, 2017, 29: 1606100 CrossRef PubMed Google Scholar

[12] Kloxin C J, Bowman C N. Covalent adaptable networks: Smart, reconfigurable and responsive network systems. Chem Soc Rev, 2013, 42: 7161-7173 CrossRef PubMed Google Scholar

[13] Denissen W, Winne J M, Du Prez F E. Vitrimers: Permanent organic networks with glass-like fluidity. Chem Sci, 2016, 7: 30-38 CrossRef PubMed Google Scholar

[14] Gandini A. The furan/maleimide Diels-Alder reaction: A versatile click-unclick tool in macromolecular synthesis. Prog Polymer Sci, 2013, 38: 1-29 CrossRef Google Scholar

[15] Otera J. Transesterification. Chem Rev, 1993, 93: 1449-1470 CrossRef Google Scholar

[16] Martin R, Rekondo A, de Luzuriaga A R, et al. Dynamic sulfur chemistry as a key tool in the design of self-healing polymers. Smart Mater Struct, 2016, 25: 084017 CrossRef ADS Google Scholar

[17] Belowich M E, Stoddart J F. Dynamic imine chemistry. Chem Soc Rev, 2012, 41: 2003-2024 CrossRef PubMed Google Scholar

[18] Rekondo A, Martin R, de Luzuriaga A R, et al. Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis. Mater Horiz, 2014, 1: 237-240 CrossRef Google Scholar

[19] Taynton P, Ni H, Zhu C, et al. Repairable woven carbon fiber composites with full recyclability enabled by malleable polyimine networks. Adv Mater, 2016, 28: 2904-2909 CrossRef PubMed Google Scholar

[20] Jin B, Song H, Jiang R, et al. Programming a crystalline shape memory polymer network with thermo- and photo-reversible bonds toward a single-component soft robot. Sci Adv, 2018, 4: eaao3865 CrossRef PubMed ADS Google Scholar

[21] Pei Z, Yang Y, Chen Q, et al. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nat Mater, 2014, 13: 36-41 CrossRef PubMed ADS Google Scholar

[22] Ma J, Mu X, Bowman C N, et al. A photoviscoplastic model for photoactivated covalent adaptive networks. J Mech Phys Solids, 2014, 70: 84-103 CrossRef ADS Google Scholar

[23] Long K N. The mechanics of network polymers with thermally reversible linkages. J Mech Phys Solids, 2014, 63: 386-411 CrossRef ADS Google Scholar

[24] Vernerey F J, Long R, Brighenti R. A statistically-based continuum theory for polymers with transient networks. J Mech Phys Solids, 2017, 107: 1-20 CrossRef ADS Google Scholar

[25] Yu K, Shi Q, Li H, et al. Interfacial welding of dynamic covalent network polymers. J Mech Phys Solids, 2016, 94: 1-17 CrossRef ADS Google Scholar

[26] Yu K, Shi Q, Wang T, et al. A computational model for surface welding in covalent adaptable networks using finite-element analysis. J Appl Mech, 2016, 83: 091002 CrossRef ADS Google Scholar

[27] Shi Q, Yu K, Dunn M L, et al. Solvent assisted pressure-free surface welding and reprocessing of malleable epoxy polymers. Macromolecules, 2016, 49: 5527-5537 CrossRef ADS Google Scholar

[28] Shi Q, Yu K, Kuang X, et al. Recyclable 3D printing of vitrimer epoxy. Mater Horiz, 2017, 4: 598-607 CrossRef Google Scholar

[29] Yu K, Shi Q, Dunn M L, et al. Carbon fiber reinforced thermoset composite with near 100% recyclability. Adv Funct Mater, 2016, 26: 6098-6106 CrossRef Google Scholar

[30] Kuang X, Zhou Y, Shi Q, et al. Recycling of epoxy thermoset and composites via good solvent assisted and small molecules participated exchange reactions. ACS Sustain Chem Eng, 2018, 6: 9189-9197 CrossRef Google Scholar

[31] Kuang X, Shi Q, Zhou Y, et al. Dissolution of epoxy thermosets via mild alcoholysis: The mechanism and kinetics study. RSC Adv, 2018, 8: 1493-1502 CrossRef Google Scholar

[32] Montarnal D, Capelot M, Tournilhac F, et al. Silica-like malleable materials from permanent organic networks. Science, 2011, 334: 965-968 CrossRef PubMed ADS Google Scholar

[33] Stukalin E B, Cai L H, Kumar N A, et al. Self-healing of unentangled polymer networks with reversible bonds. Macromolecules, 2013, 46: 7525-7541 CrossRef PubMed ADS Google Scholar

[34] Albertsson A C, Hakkarainen M. Designed to degrade. Science, 2017, 358: 872-873 CrossRef PubMed ADS Google Scholar

[35] Yu K, Taynton P, Zhang W, et al. Reprocessing and recycling of thermosetting polymers based on bond exchange reactions. RSC Adv, 2014, 4: 10108-10117 CrossRef Google Scholar

[36] Yu K, Taynton P, Zhang W, et al. Influence of stoichiometry on the glass transition and bond exchange reactions in epoxy thermoset polymers. RSC Adv, 2014, 4: 48682-48690 CrossRef Google Scholar

[37] de Luzuriaga A R, Martin R, Markaide N, et al. Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites. Mater Horiz, 2016, 3: 241-247 CrossRef Google Scholar

  • 图 1

    自适应树脂热压辅助连接过程的界面力学模型[25]. (a) 界面接触变形示意图, 即由树脂自身热力学特性决定的界面接触面积在热压下的演化, F为施加的外部压力, t1, t2t3分别为3个不同时刻; (b) 界面键交换反应示意图, 即当界面接触距离接近分子链热运动尺度(10−10 m)时, 分子链端部的热激活官能团通过键交换反应在界面附近形成化学共价键, 将界面连成一体

  • 图 2

    自适应树脂热压辅助连接过程的界面化学反应动力学二维格栅结构模型[25]. (a) 两块自适应树脂的热压辅助连接示意图; (b) 连接界面附近的代表性二维格栅结构模型

  • 图 3

    自适应树脂热压辅助连接的有限元分析方法[26]. (a) 内聚力模型; (b) 离散内聚力法示意图; (c) 受拉界面分离过程的有限元模拟结果; (d) 受拉界面分离过程的实验结果

  • 图 4

    小分子介入的酯键交换反应过程[27]

  • 图 5

    自适应热固性树脂的无压力小分子介入连接[27]. (a) 连接过程; (b) T型撕裂实验

  • 图 6

    自适应热固性树脂的无压力连接和热压辅助连接性能对比[27]

  • 图 7

    回收前后自适应热固性树脂的动态力学性能比较[27]. (a) 实验测得的不同温度下正则化应力松弛曲线; (b) 从实验中提取的松弛时间和连续温度变化下的理论松弛时间

  • 图 8

    自适应热固性树脂循环3D打印[28]. (a) 概念示意图; (b) 树脂循环打印过程

  • 图 9

    自适应热固性树脂基复合材料的小分子介入表面损伤修复. (a) 修复过程示意图[29]; (b) 修复实验过程[29]; (c) 表面修复前后的光学显微图像[27]

  • 图 10

    自适应热固性树脂基复合材料近乎100%回收[29]. (a) 回收过程示意图; (b) 回收实验结果

  • 图 11

    回收前后的碳纤维电子显微镜图[29]. (a) 原始碳纤维布; (b) 回收的碳纤维布

  • 图 12

    工业热固性环氧复合材料纤维回收[30,31]. (a) 复合材料机翼; (b) 碳纤维环氧基复合材料; (c) 回收后的多层碳纤维布; (d) 玻璃纤维环氧基复合材料; (e) 回收后的玻璃纤维布

  • 表 1   热固性复合材料回收与制造新方法的比较

    方法来源

    原理

    效果及特点

    不足及待改进之处

    回收

    制造

    是否有毒

    纤维

    树脂

    修复

    连接

    3D打印

    Taynton等人[19]

    转氨作用引起的亚胺-胺基交换反应, 使聚亚胺降解, 溶于过量二乙烯三胺反应前体

    (1) 适用于特定聚亚胺树脂.

    (2) 合成聚亚胺的亚胺缩合反应不稳定、可直接水解, 吸水变形严重.

    (3) 过量反应前体导致自身降解, 反应不可控.

    (4) 二乙烯三胺溶剂毒性强.

    (5) 磁力搅拌会造成碳纤维结构完整性消失.

    (6) 溶剂与降解后的树脂无法分离, 不能回收树脂

    Ruiz等人[37]

    基于双硫键交换反应的改性环氧树脂, 溶解于2-巯基丙酸/二甲基甲酰胺混合溶剂

    (1) 适用于特定改性环氧树脂.

    (2) 2-巯基丙酸溶剂有毒和酸性, 对碳纤维有损害.

    (3) 磁力搅拌会造成碳纤维结构完整性散失.

    (4) 溶剂与降解后的树脂无法分离, 无法回收树脂

    Shi等人[27,29]

    小分子介入的键交换反应, 使环氧树脂溶解于醇类溶剂

    需要考虑工业化成本