References
[1]
Das S, Warren J, West D, et al. Global carbon fiber composites supply chain competitiveness analysis. Technical Report. National Renewable Energy Lab, Golden, CO (United States), 2016. 1–99.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Das S, Warren J, West D, et al. Global carbon fiber composites supply chain competitiveness analysis. Technical Report. National Renewable Energy Lab, Golden, CO (United States), 2016. 1–99&
[2]
Li
Q,
Chen
L,
Gadinski
M R, et al.
Flexible high-temperature dielectric materials from polymer nanocomposites.
Nature,
2015, 523: 576-579
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Flexible high-temperature dielectric materials from polymer nanocomposites&author=Li Q&author=Chen L&author=Gadinski M R&publication_year=2015&journal=Nature&volume=523&pages=576-579
[3]
Oliveux
G,
Dandy
L O,
Leeke
G A.
Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties.
Prog Mater Sci,
2015, 72: 61-99
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties&author=Oliveux G&author=Dandy L O&author=Leeke G A&publication_year=2015&journal=Prog Mater Sci&volume=72&pages=61-99
[4]
Yuan
Y,
Sun
Y,
Yan
S, et al.
Multiply fully recyclable carbon fibre reinforced heat-resistant covalent thermosetting advanced composites.
Nat Commun,
2017, 8: 14657
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Multiply fully recyclable carbon fibre reinforced heat-resistant covalent thermosetting advanced composites&author=Yuan Y&author=Sun Y&author=Yan S&publication_year=2017&journal=Nat Commun&volume=8&pages=14657
[5]
Thoppul
S D,
Finegan
J,
Gibson
R F.
Mechanics of mechanically fastened joints in polymer-matrix composite structures—A review.
Compos Sci Tech,
2009, 69: 301-329
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mechanics of mechanically fastened joints in polymer-matrix composite structures—A review&author=Thoppul S D&author=Finegan J&author=Gibson R F&publication_year=2009&journal=Compos Sci Tech&volume=69&pages=301-329
[6]
Budhe
S,
Banea
M D,
de Barros
S, et al.
An updated review of adhesively bonded joints in composite materials.
Int J Adhes Adhes,
2017, 72: 30-42
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=An updated review of adhesively bonded joints in composite materials&author=Budhe S&author=Banea M D&author=de Barros S&publication_year=2017&journal=Int J Adhes Adhes&volume=72&pages=30-42
[7]
Eckel
Z C,
Zhou
C,
Martin
J H, et al.
Additive manufacturing of polymer-derived ceramics.
Science,
2016, 351: 58-62
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Additive manufacturing of polymer-derived ceramics&author=Eckel Z C&author=Zhou C&author=Martin J H&publication_year=2016&journal=Science&volume=351&pages=58-62
[8]
Zheng
X,
Lee
H,
Weisgraber
T H, et al.
Ultralight, ultrastiff mechanical metamaterials.
Science,
2014, 344: 1373-1377
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ultralight, ultrastiff mechanical metamaterials&author=Zheng X&author=Lee H&author=Weisgraber T H&publication_year=2014&journal=Science&volume=344&pages=1373-1377
[9]
Ding
Z,
Yuan
C,
Peng
X, et al.
Direct 4D printing via active composite materials.
Sci Adv,
2017, 3: e1602890
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Direct 4D printing via active composite materials&author=Ding Z&author=Yuan C&author=Peng X&publication_year=2017&journal=Sci Adv&volume=3&pages=e1602890
[10]
Compton
B G,
Lewis
J A.
3D-printing of lightweight cellular composites.
Adv Mater,
2014, 26: 5930-5935
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=3D-printing of lightweight cellular composites&author=Compton B G&author=Lewis J A&publication_year=2014&journal=Adv Mater&volume=26&pages=5930-5935
[11]
Zou
W,
Dong
J,
Luo
Y, et al.
Dynamic covalent polymer networks: From old chemistry to modern day innovations.
Adv Mater,
2017, 29: 1606100
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dynamic covalent polymer networks: From old chemistry to modern day innovations&author=Zou W&author=Dong J&author=Luo Y&publication_year=2017&journal=Adv Mater&volume=29&pages=1606100
[12]
Kloxin
C J,
Bowman
C N.
Covalent adaptable networks: Smart, reconfigurable and responsive network systems.
Chem Soc Rev,
2013, 42: 7161-7173
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Covalent adaptable networks: Smart, reconfigurable and responsive network systems&author=Kloxin C J&author=Bowman C N&publication_year=2013&journal=Chem Soc Rev&volume=42&pages=7161-7173
[13]
Denissen
W,
Winne
J M,
Du Prez
F E.
Vitrimers: Permanent organic networks with glass-like fluidity.
Chem Sci,
2016, 7: 30-38
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Vitrimers: Permanent organic networks with glass-like fluidity&author=Denissen W&author=Winne J M&author=Du Prez F E&publication_year=2016&journal=Chem Sci&volume=7&pages=30-38
[14]
Gandini
A.
The furan/maleimide Diels-Alder reaction: A versatile click-unclick tool in macromolecular synthesis.
Prog Polymer Sci,
2013, 38: 1-29
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The furan/maleimide Diels-Alder reaction: A versatile click-unclick tool in macromolecular synthesis&author=Gandini A&publication_year=2013&journal=Prog Polymer Sci&volume=38&pages=1-29
[15]
Otera
J.
Transesterification.
Chem Rev,
1993, 93: 1449-1470
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Transesterification&author=Otera J&publication_year=1993&journal=Chem Rev&volume=93&pages=1449-1470
[16]
Martin
R,
Rekondo
A,
de Luzuriaga
A R, et al.
Dynamic sulfur chemistry as a key tool in the design of self-healing polymers.
Smart Mater Struct,
2016, 25: 084017
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dynamic sulfur chemistry as a key tool in the design of self-healing polymers&author=Martin R&author=Rekondo A&author=de Luzuriaga A R&publication_year=2016&journal=Smart Mater Struct&volume=25&pages=084017
[17]
Belowich
M E,
Stoddart
J F.
Dynamic imine chemistry.
Chem Soc Rev,
2012, 41: 2003-2024
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dynamic imine chemistry&author=Belowich M E&author=Stoddart J F&publication_year=2012&journal=Chem Soc Rev&volume=41&pages=2003-2024
[18]
Rekondo
A,
Martin
R,
de Luzuriaga
A R, et al.
Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis.
Mater Horiz,
2014, 1: 237-240
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis&author=Rekondo A&author=Martin R&author=de Luzuriaga A R&publication_year=2014&journal=Mater Horiz&volume=1&pages=237-240
[19]
Taynton
P,
Ni
H,
Zhu
C, et al.
Repairable woven carbon fiber composites with full recyclability enabled by malleable polyimine networks.
Adv Mater,
2016, 28: 2904-2909
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Repairable woven carbon fiber composites with full recyclability enabled by malleable polyimine networks&author=Taynton P&author=Ni H&author=Zhu C&publication_year=2016&journal=Adv Mater&volume=28&pages=2904-2909
[20]
Jin
B,
Song
H,
Jiang
R, et al.
Programming a crystalline shape memory polymer network with thermo- and photo-reversible bonds toward a single-component soft robot.
Sci Adv,
2018, 4: eaao3865
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Programming a crystalline shape memory polymer network with thermo- and photo-reversible bonds toward a single-component soft robot&author=Jin B&author=Song H&author=Jiang R&publication_year=2018&journal=Sci Adv&volume=4&pages=eaao3865
[21]
Pei
Z,
Yang
Y,
Chen
Q, et al.
Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds.
Nat Mater,
2014, 13: 36-41
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds&author=Pei Z&author=Yang Y&author=Chen Q&publication_year=2014&journal=Nat Mater&volume=13&pages=36-41
[22]
Ma
J,
Mu
X,
Bowman
C N, et al.
A photoviscoplastic model for photoactivated covalent adaptive networks.
J Mech Phys Solids,
2014, 70: 84-103
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A photoviscoplastic model for photoactivated covalent adaptive networks&author=Ma J&author=Mu X&author=Bowman C N&publication_year=2014&journal=J Mech Phys Solids&volume=70&pages=84-103
[23]
Long
K N.
The mechanics of network polymers with thermally reversible linkages.
J Mech Phys Solids,
2014, 63: 386-411
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=The mechanics of network polymers with thermally reversible linkages&author=Long K N&publication_year=2014&journal=J Mech Phys Solids&volume=63&pages=386-411
[24]
Vernerey
F J,
Long
R,
Brighenti
R.
A statistically-based continuum theory for polymers with transient networks.
J Mech Phys Solids,
2017, 107: 1-20
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A statistically-based continuum theory for polymers with transient networks&author=Vernerey F J&author=Long R&author=Brighenti R&publication_year=2017&journal=J Mech Phys Solids&volume=107&pages=1-20
[25]
Yu
K,
Shi
Q,
Li
H, et al.
Interfacial welding of dynamic covalent network polymers.
J Mech Phys Solids,
2016, 94: 1-17
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Interfacial welding of dynamic covalent network polymers&author=Yu K&author=Shi Q&author=Li H&publication_year=2016&journal=J Mech Phys Solids&volume=94&pages=1-17
[26]
Yu
K,
Shi
Q,
Wang
T, et al.
A computational model for surface welding in covalent adaptable networks using finite-element analysis.
J Appl Mech,
2016, 83: 091002
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A computational model for surface welding in covalent adaptable networks using finite-element analysis&author=Yu K&author=Shi Q&author=Wang T&publication_year=2016&journal=J Appl Mech&volume=83&pages=091002
[27]
Shi
Q,
Yu
K,
Dunn
M L, et al.
Solvent assisted pressure-free surface welding and reprocessing of malleable epoxy polymers.
Macromolecules,
2016, 49: 5527-5537
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Solvent assisted pressure-free surface welding and reprocessing of malleable epoxy polymers&author=Shi Q&author=Yu K&author=Dunn M L&publication_year=2016&journal=Macromolecules&volume=49&pages=5527-5537
[28]
Shi
Q,
Yu
K,
Kuang
X, et al.
Recyclable 3D printing of vitrimer epoxy.
Mater Horiz,
2017, 4: 598-607
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Recyclable 3D printing of vitrimer epoxy&author=Shi Q&author=Yu K&author=Kuang X&publication_year=2017&journal=Mater Horiz&volume=4&pages=598-607
[29]
Yu
K,
Shi
Q,
Dunn
M L, et al.
Carbon fiber reinforced thermoset composite with near 100% recyclability.
Adv Funct Mater,
2016, 26: 6098-6106
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Carbon fiber reinforced thermoset composite with near 100% recyclability&author=Yu K&author=Shi Q&author=Dunn M L&publication_year=2016&journal=Adv Funct Mater&volume=26&pages=6098-6106
[30]
Kuang
X,
Zhou
Y,
Shi
Q, et al.
Recycling of epoxy thermoset and composites via good solvent assisted and small molecules participated exchange reactions.
ACS Sustain Chem Eng,
2018, 6: 9189-9197
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Recycling of epoxy thermoset and composites via good solvent assisted and small molecules participated exchange reactions&author=Kuang X&author=Zhou Y&author=Shi Q&publication_year=2018&journal=ACS Sustain Chem Eng&volume=6&pages=9189-9197
[31]
Kuang
X,
Shi
Q,
Zhou
Y, et al.
Dissolution of epoxy thermosets via mild alcoholysis: The mechanism and kinetics study.
RSC Adv,
2018, 8: 1493-1502
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dissolution of epoxy thermosets via mild alcoholysis: The mechanism and kinetics study&author=Kuang X&author=Shi Q&author=Zhou Y&publication_year=2018&journal=RSC Adv&volume=8&pages=1493-1502
[32]
Montarnal
D,
Capelot
M,
Tournilhac
F, et al.
Silica-like malleable materials from permanent organic networks.
Science,
2011, 334: 965-968
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silica-like malleable materials from permanent organic networks&author=Montarnal D&author=Capelot M&author=Tournilhac F&publication_year=2011&journal=Science&volume=334&pages=965-968
[33]
Stukalin
E B,
Cai
L H,
Kumar
N A, et al.
Self-healing of unentangled polymer networks with reversible bonds.
Macromolecules,
2013, 46: 7525-7541
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Self-healing of unentangled polymer networks with reversible bonds&author=Stukalin E B&author=Cai L H&author=Kumar N A&publication_year=2013&journal=Macromolecules&volume=46&pages=7525-7541
[34]
Albertsson
A C,
Hakkarainen
M.
Designed to degrade.
Science,
2017, 358: 872-873
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Designed to degrade&author=Albertsson A C&author=Hakkarainen M&publication_year=2017&journal=Science&volume=358&pages=872-873
[35]
Yu
K,
Taynton
P,
Zhang
W, et al.
Reprocessing and recycling of thermosetting polymers based on bond exchange reactions.
RSC Adv,
2014, 4: 10108-10117
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Reprocessing and recycling of thermosetting polymers based on bond exchange reactions&author=Yu K&author=Taynton P&author=Zhang W&publication_year=2014&journal=RSC Adv&volume=4&pages=10108-10117
[36]
Yu
K,
Taynton
P,
Zhang
W, et al.
Influence of stoichiometry on the glass transition and bond exchange reactions in epoxy thermoset polymers.
RSC Adv,
2014, 4: 48682-48690
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Influence of stoichiometry on the glass transition and bond exchange reactions in epoxy thermoset polymers&author=Yu K&author=Taynton P&author=Zhang W&publication_year=2014&journal=RSC Adv&volume=4&pages=48682-48690
[37]
de Luzuriaga
A R,
Martin
R,
Markaide
N, et al.
Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites.
Mater Horiz,
2016, 3: 241-247
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites&author=de Luzuriaga A R&author=Martin R&author=Markaide N&publication_year=2016&journal=Mater Horiz&volume=3&pages=241-247