logo

More info
  • ReceivedSep 29, 2019
  • AcceptedApr 17, 2020
  • PublishedJun 23, 2020

Abstract

文章回顾了近年来发展的全球大气环流的三型分解理论, 主要包括全球大气环流三型分解模型及全球大尺度水平型环流、经圈型环流和纬圈型环流的动力学方程组理论. 与传统二维环流分解方法的对比表明: 全球大气环流三型分解将垂直涡度中由水平涡旋运动与辐合辐散运动引起的垂直涡度分量有效地分解开来, 也将垂直速度中的经向垂直环流与纬向垂直环流分量分解开来, 为研究辐合辐散过程对垂直涡度场的演变作用及局地垂直环流的准确描述问题提供了新的方法. 全球大气环流的三型分解是一种基于实际大气运动特征的三维环流分解方法, 其分解后的水平型、经圈型以及纬圈型环流可分别看作是中高纬度Rossby波及低纬度Hadley和Walker环流在全球的推广. 因此, 新的环流分解模型及其动力学方程组为中高纬度大气环流与低纬度大气环流之间的相互作用问题研究以及全球变暖背景下大尺度环流异常演变的物理机制问题研究提供了新的理论与方法.


Funded by

国家重点研发计划项目(2017YFC1502305)

国家自然科学基金面上项目(41775069,41975076)


References

[1] 丑纪范. 1974. 天气数值预报中使用过去资料的问题. 中国科学, 6: 635–644. Google Scholar

[2] 丑纪范. 1983. 初始场作用的衰减与算子的特性. 气象学报, 41: 385–392. Google Scholar

[3] 成剑波. 2019. 基于全球大气环流三型分解方法对哈德来环流变化及其受地形影响的研究. 博士学位论文. 兰州: 兰州大学. Google Scholar

[4] 成剑波, 胡淑娟, 丑纪范. 2016. Hadley环流的双层结构及其年代际演变特征. 热带气象学报, 32: 207–218. Google Scholar

[5] 邓北胜, 刘海涛, 丑纪范. 2010. ENSO事件期间热带印度洋和太平洋地区大尺度海气相互作用联系的研究. 热带气象学报, 26: 357–363. Google Scholar

[6] 管晓丹, 马洁茹, 黄建平, 黄瑞新, 张镭, 马柱国. 2019. 海洋对干旱半干旱区气候变化的影响. 中国科学: 地球科学, 49: 895–912. Google Scholar

[7] 胡淑娟. 2006. 全球大气运动的三维环流分解及大气垂直运动特征的分析. 博士学位论文. 兰州: 兰州大学. Google Scholar

[8] 胡淑娟. 2008. 1998年7月副热带高压短期结构演变特征与垂直运动的关系. 兰州大学学报(自然科学版), 44: 28–32. Google Scholar

[9] 刘海涛, 胡淑娟, 徐明, 丑纪范. 2007. 全球大气环流三维分解. 中国科学: 地球科学, 37: 1679–1692. Google Scholar

[10] 陶祖钰, 周小刚, 郑永光. 2012. 天气预报的理论基础——准地转理论概要及其业务应用. 气象科技进展, 2: 6–16. Google Scholar

[11] 吴国雄, Tibaldi S. 1988. 关于大气平均经圈环流的一种计算方案. 中国科学B辑: 化学生物学农学医学地学, 18:106–114. Google Scholar

[12] 徐明. 2001. 大尺度环流的三维分解及其动力特征的研究. 博士学位论文. 兰州: 兰州大学. Google Scholar

[13] 周小刚, 王秀明, 陶祖钰. 2013. 准地转理论基本问题回顾与讨论. 气象, 39: 401–409. Google Scholar

[14] Bayr T, Dommenget D, Martin T, Power S B. The eastward shift of the Walker Circulation in response to global warming and its relationship to ENSO variability. Clim Dyn, 2014, 43: 2747-2763 CrossRef ADS Google Scholar

[15] Charney J, Halem M, Jastrow R. Use of incomplete historical data to infer the present state of the atmosphere. J Atmos Sci, 1969, 26: 1160-1163 CrossRef Google Scholar

[16] Chelton D B, Schlax M G. Global observations of oceanic Rossby waves. Science, 1996, 272: 234-238 CrossRef ADS Google Scholar

[17] Cheng J B, Gao C B, Hu S J, Feng G L. High-stability algorithm for the three-pattern decomposition of global atmospheric circulation. Theor Appl Climatol, 2018, 133: 851-866 CrossRef ADS Google Scholar

[18] DiNezio P N, Vecchi G A, Clement A C. Detectability of changes in the Walker circulation in response to global warming. J Clim, 2013, 26: 4038-4048 CrossRef ADS Google Scholar

[19] England M H, McGregor S, Spence P, Meehl G A, Timmermann A, Cai W, Gupta A S, McPhaden M J, Purich A, Santoso A. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Change, 2014, 4: 222-227 CrossRef ADS Google Scholar

[20] Hartmann D L. 1994. Global Physical Climatology. San Diego: Academic Press. 155. Google Scholar

[21] Holton J R, Staley D O. An introduction to dynamic meteorology. Am J Phys, 1973, 41: 752-754 CrossRef ADS Google Scholar

[22] Hou X Y, Cheng J B, Hu S J, Feng G L. Interdecadal variations in the Walker circulation and its connection to inhomogeneous air temperature changes from 1961–2012. Atmosphere, 2018, 9: 469 CrossRef ADS Google Scholar

[23] Hu S J, Cheng J B, Chou J F. Novel three-pattern decomposition of global atmospheric circulation: Generalization of traditional two-dimensional decomposition. Clim Dyn, 2017, 49: 3573-3586 CrossRef ADS Google Scholar

[24] Hu S J, Chou J F, Cheng J B. Three-pattern decomposition of global atmospheric circulation: Part I—Decomposition model and theorems. Clim Dyn, 2018a, 50: 2355-2368 CrossRef ADS Google Scholar

[25] Hu S J, Cheng J B, Xu M, Chou J F. Three-pattern decomposition of global atmospheric circulation: Part II—Dynamical equations of horizontal, meridional and zonal circulations. Clim Dyn, 2018b, 50: 2673-2686 CrossRef ADS Google Scholar

[26] Hu Y Y, Tung K K, Liu J P. A closer comparison of early and late-winter atmospheric trends in the northern hemisphere. J Clim, 2005, 18: 3204-3216 CrossRef ADS Google Scholar

[27] Hu Y Y, Fu Q. Observed poleward expansion of the Hadley circulation since 1979. Atmos Chem Phys, 2007, 7: 5229-5236 CrossRef Google Scholar

[28] Hu Y Y, Huang H, Zhou C. Widening and weakening of the Hadley circulation under global warming. Sci Bull, 2018, 63: 640-644 CrossRef Google Scholar

[29] Kiladis G N, Weickmann K M. Circulation anomalies associated with tropical convection during northern winter. Mon Weather Rev, 1992a, 120: 1900-1923 CrossRef Google Scholar

[30] Kiladis G N, Weickmann K M. Extratropical forcing of tropical Pacific convection during northern winter. Mon Weather Rev, 1992b, 120: 1924-1939 CrossRef Google Scholar

[31] Kiladis G N, Feldstein S B. Rossby wave propagation into the tropics in two GFDL general circulation models. Clim Dyn, 1994, 9: 245-252 CrossRef ADS Google Scholar

[32] Kiladis G N, Wheeler M. Horizontal and vertical structure of observed tropospheric equatorial Rossby waves. J Geophys Res, 1995, 100: 22981-22997 CrossRef ADS Google Scholar

[33] Kiladis G N, Weickmann K M. Horizontal structure and seasonality of large-scale circulations associated with submonthly tropical convection. Mon Weather Rev, 1997, 125: 1997-2013 CrossRef Google Scholar

[34] Kosaka Y, Xie S P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 2013, 501: 403-407 CrossRef PubMed ADS Google Scholar

[35] Mitas C M, Clement A. Has the Hadley cell been strengthening in recent decades?. Geophys Res Lett, 2005, 32: L03809 CrossRef ADS Google Scholar

[36] Oort A H, Yienger J J. Observed interannual variability in the Hadley circulation and its connection to ENSO. J Clim, 1996, 9: 2751-2767 CrossRef Google Scholar

[37] Qian W H, Wu K J, Chen D L. The Arctic and Polar cells act on the Arctic sea ice variation. Tellus Ser A-Dyn Meteorol Oceanol, 2015, 67: 27692 CrossRef ADS Google Scholar

[38] Qian W H, Wu K J, Liang H Y. Arctic and Antarctic cells in the troposphere. Theor Appl Climatol, 2016, 125: 1-12 CrossRef ADS Google Scholar

[39] Qian W H, Wu K J, Leung J C H. Climatic anomalous patterns associated with the Arctic and Polar cell strength variations. Clim Dyn, 2017, 48: 169-189 CrossRef ADS Google Scholar

[40] Rossby C G. Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J Mar Res, 1939, 2: 38-55 CrossRef Google Scholar

[41] Schwendike J, Govekar P, Reeder M J, Wardle R, Berry G J, Jakob C. Local partitioning of the overturning circulation in the tropics and the connection to the Hadley and Walker circulations. J Geophys Res-Atmos, 2014, 119: 1322-1339 CrossRef ADS Google Scholar

[42] Schwendike J, Berry G J, Reeder M J, Jakob C, Govekar P, Wardle R. Trends in the local Hadley and local Walker circulations. J Geophys Res-Atmos, 2015, 120: 7599-7618 CrossRef ADS Google Scholar

[43] Trenberth K E, Stepaniak D P. Seamless poleward atmospheric energy transports and implications for the Hadley circulation. J Clim, 2003, 16: 3706-3722 CrossRef Google Scholar

[44] Trenberth K E, Caron J M. Estimates of meridional atmosphere and ocean heat transports. J Clim, 2001, 14: 3433-3443 CrossRef Google Scholar

[45] Zhang C, Webster P J. Laterally forced equatorial perturbations in a linear model. Part I: Stationary transient forcing. J Atmos Sci, 1992, 49: 585-607 CrossRef Google Scholar

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号