logo

SCIENTIA SINICA Terrae, Volume 50 , Issue 8 : 1138-1148(2020) https://doi.org/10.1360/SSTe-2019-0265

现代蒙古高原与中纬度东亚季风区夏季降水一致性变化的空间范围及其成因

More info
  • ReceivedNov 3, 2019
  • AcceptedFeb 25, 2020
  • PublishedMay 11, 2020

Abstract

蒙古高原地处亚洲中部干旱区东部, 受到西风环流的主控, 表现出干旱半干旱气候特征, 其东部受到季风环流的影响, 表现为湿润半湿润气候特征的中纬度东亚季风区. 但有研究关注到该地区现代夏季降水的变化与亚洲中部干旱区西部变化并不一致, 却与中纬度东亚季风区表现出同相位的降水变化特征. 为了查明这种降水一致性的空间范围, 文章使用1979~2016年GPCC数据集的逐月降水资料, 分别对蒙古高原夏季降水年际和年代际信号进行分析. 结果显示: 蒙古高原与中纬度东亚季风区在年际和年代际尺度上都呈现出了基本一致的降水变化特征, 一致性变化区域主要为蒙古高原、中国东北和华北地区. 进一步对蒙古高原与中纬度东亚季风区年代际出现降水一致性变化的物理机制进行研究, 发现北大西洋和中亚地区与欧洲和蒙古高原高度场异常反相位配置的欧亚大陆中纬度遥相关波列是导致降水一致性变化的关键因素. 当北大西洋和中亚地区为高度场正异常, 而蒙古高原出现高度场负异常这种环流配置时, 能够将更多的西风和中纬度季风水汽输送到蒙古高原、中国东北和华北地区, 并且通过加强东北亚低压来增强东亚夏季风, 还可以激发异常上升运动, 从而导致主要受西风环流控制的蒙古高原和受季风环流控制的中国东北和华北地区降水出现一致性增加. 反之则出现一致性降水减少. 这项研究将对理解东亚古降水/湿度重建样点的空间代表性, 以及厘清区域气候的一致性背景具有指示性意义.


Funded by

国家自然科学基金项目(41790421,41877446)

中央高校基本科研业务费专项资金项目(lzujbky-2018-140)


References

[1] 陈婕, 黄伟, 靳立亚, 陈建徽, 陈圣乾, 陈发虎. 2018. 东亚夏季风的气候北界指标及其年际变化研究. 中国科学: 地球科学, 48: 93–101. Google Scholar

[2] 陈际龙, 黄荣辉. 2007. 亚澳季风各子系统气候学特征的异同研究II. 夏季风水汽输送. 大气科学, 31: 766–778. Google Scholar

[3] 郭其蕴. 1983. 东亚夏季风强度指数及其变化的分析. 地理学报, 38: 207–217. Google Scholar

[4] 黄伟, 陈建徽, 张肖剑, Feng S, 陈发虎. 2015. 现代气候条件下降水变化的“西风模态”空间范围及其影响因子初探. 中国科学: 地球科学, 45: 379–388. Google Scholar

[5] An C B, Chen F H, Barton L. Holocene environmental changes in Mongolia: A review. Glob Planet Change, 2008, 63: 283-289 CrossRef ADS Google Scholar

[6] An Z. The history and variability of the East Asian paleomonsoon climate. Quat Sci Rev, 2000, 19: 171-187 CrossRef Google Scholar

[7] Chen F, Yu Z, Yang M, Ito E, Wang S, Madsen D B, Huang X, Zhao Y, Sato T, John B. Birks H, Boomer I, Chen J, An C, Wünnemann B. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quat Sci Rev, 2008, 27: 351-364 CrossRef ADS Google Scholar

[8] Chen F, Jia J, Chen J, Li G, Zhang X, Xie H, Xia D, Huang W, An C. A persistent Holocene wetting trend in arid central Asia, with wettest conditions in the late Holocene, revealed by multi-proxy analyses of loess-paleosol sequences in Xinjiang, China. Quat Sci Rev, 2016, 146: 134-146 CrossRef ADS Google Scholar

[9] Chen F, Chen J, Huang W, Chen S, Huang X, Jin L, Jia J, Zhang X, An C, Zhang J, Zhao Y, Yu Z, Zhang R, Liu J, Zhou A, Feng S. Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales. Earth-Sci Rev, 2019, 192: 337-354 CrossRef ADS Google Scholar

[10] Cheng H, Wu T, Dong W. Thermal contrast between the middle-latitude Asian continent and adjacent ocean and its connection to the East Asian summer precipitation. J Clim, 2008, 21: 4992-5007 CrossRef ADS Google Scholar

[11] Chung Y, Kim H, Dulam J, Harris J. On heavy dustfall observed with explosive sandstorms in Chongwon-Chongju, Korea in 2002. Atmos Environ, 2003, 37: 3425-3433 CrossRef Google Scholar

[12] Dee D P, Uppala S M, Simmons A J, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M A, Balsamo G, Bauer P, Bechtold P, Beljaars A C M, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer A J, Haimberger L, Healy S B, Hersbach H, Hólm E V, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally A P, Monge-Sanz B M, Morcrette J J, Park B K, Peubey C, de Rosnay P, Tavolato C, Thépaut J N, Vitart F. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q J R Meteorol Soc, 2011, 137: 553-597 CrossRef ADS Google Scholar

[13] Duchon C E. Lanczos filtering in one and two dimensions. J Appl Meteor, 1979, 18: 1016-1022 CrossRef Google Scholar

[14] Fujiwara H, Fukuyama T, Shirato Y, Ohkuro T, Taniyama I, Zhang T H. Deposition of atmospheric 137Cs in Japan associated with the Asian dust event of March 2002. Sci Total Environ, 2007, 384: 306-315 CrossRef PubMed ADS Google Scholar

[15] Gunin P D, Vostokova E A, Dorofeyuk N I, Tarasov P E, Black C C. 1999. Vegetation dynamics of Mongolia. Dordrecht: Kluwer Academic. 238. Google Scholar

[16] Han J, Wang H. Interdecadal variability of the East Asian summer monsoon in an AGCM. Adv Atmos Sci, 2007, 24: 808-818 CrossRef ADS Google Scholar

[17] Harris I, Jones P D, Osborn T J, Lister D H. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int J Climatol, 2014, 34: 623-642 CrossRef ADS Google Scholar

[18] Holton J R. 2004. An Introduction to Dynamic Meteorology. 4th ed. Burlington: Elsevier Academic Press. 535. Google Scholar

[19] Huang R H, Liu Y, Feng T. Interdecadal change of summer precipitation over Eastern China around the late-1990s and associated circulation anomalies, internal dynamical causes. Chin Sci Bull, 2013, 58: 1339-1349 CrossRef ADS Google Scholar

[20] Huffman G J, Adler R F, Bolvin D T, Gu G. Improving the global precipitation record: GPCP Version 2.1. Geophys Res Lett, 2009, 36: L17808 CrossRef ADS Google Scholar

[21] Lee E H, Sohn B J. Recent increasing trend in dust frequency over Mongolia and Inner Mongolia regions and its association with climate and surface condition change. Atmos Environ, 2011, 45: 4611-4616 CrossRef ADS Google Scholar

[22] Li J, Cook E R, Chen F, Davi N, D'Arrigo R, Gou X, Wright W E, Fang K, Jin L, Shi J, Yang T. Summer monsoon moisture variability over China and Mongolia during the past four centuries. Geophys Res Lett, 2009, 36: L22705 CrossRef ADS Google Scholar

[23] Liu J, Rühland K M, Chen J, Xu Y, Chen S, Chen Q, Huang W, Xu Q, Chen F, Smol J P. Aerosol-weakened summer monsoons decrease lake fertilization on the Chinese Loess Plateau. Nat Clim Change, 2017, 7: 190-194 CrossRef ADS Google Scholar

[24] Lin Z, Wang B. Northern East Asian low and its impact on the interannual variation of East Asian summer rainfall. Clim Dyn, 2016, 46: 83-97 CrossRef ADS Google Scholar

[25] Munkhtsetseg E, Kimura R, Wang J, Shinoda M. Pasture yield response to precipitation and high temperature in Mongolia. J Arid Environ, 2007, 70: 94-110 CrossRef ADS Google Scholar

[26] Piao J, Chen W, Wei K, Liu Y, Graf H F, Ahn J B, Pogoreltsev A. An abrupt rainfall decrease over the Asian inland plateau region around 1999 and the possible underlying mechanism. Adv Atmos Sci, 2017, 34: 456-468 CrossRef ADS Google Scholar

[27] Piao J, Chen W, Zhang Q, Hu P. Comparison of moisture transport between Siberia and northeast Asia on annual and interannual time scales. J Clim, 2018, 31: 7645-7660 CrossRef ADS Google Scholar

[28] Schneider U, Becker A, Finger P, Meyer-Christoffer A, Rudolf B, Ziese M. 2018. GPCC Full Data Monthly Product Version 2018 at 0.5°: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historical Data. Global Precipitation and Climatology Centre. Google Scholar

[29] Sato T, Tsujimura M, Yamanaka T, Iwasaki H, Sugimoto A, Sugita M, Kimura F, Davaa G, Oyunbaatar D. Water sources in semiarid northeast Asia as revealed by field observations and isotope transport model. J Geophys Res, 2007, 112: D17112 CrossRef ADS Google Scholar

[30] Wang W, Feng Z. Holocene moisture evolution across the Mongolian Plateau and its surrounding areas: A synthesis of climatic records. Earth-Sci Rev, 2013, 122: 38-57 CrossRef ADS Google Scholar

[31] Wesche K, Ambarlı D, Kamp J, Török P, Treiber J, Dengler J. The Palaearctic steppe biome: A new synthesis. Biodivers Conserv, 2016, 25: 2197-2231 CrossRef Google Scholar

[32] Wu A, Ni Q. The influence of Tibetan Plateau on the interannual variability of Asian monsoon. Adv Atmos Sci, 1997, 14: 491-504 CrossRef ADS Google Scholar

[33] Xu Z Q, Fan K, Wang H J. Decadal variation of summer precipitation over China and associated atmospheric circulation after the late 1990s. J Clim, 2015, 28: 4086-4106 CrossRef ADS Google Scholar

[34] Yamanaka T, Tsujimura M, Oyunbaatar D, Davaa G. Isotopic variation of precipitation over eastern Mongolia and its implication for the atmospheric water cycle. J Hydrol, 2007, 333: 21-34 CrossRef ADS Google Scholar

[35] Zhu Y, Wang H, Zhou W, Ma J. Recent changes in the summer precipitation pattern in East China and the background circulation. Clim Dyn, 2011, 36: 1463-1473 CrossRef ADS Google Scholar

[36] Zhu Y, Wang T, Wang H. Relative contribution of the anthropogenic forcing and natural variability to the interdecadal shift of climate during the late 1970s and 1990s. Sci Bull, 2016, 61: 416-424 CrossRef Google Scholar

[37] Zuo Z, Yang S, Zhang R, Jiang P, Zhang L, Wang F. Long-term variations of broad-scale Asian summer monsoon circulation and possible causes. J Clim, 2013, 26: 8947-8961 CrossRef ADS Google Scholar

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号